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efficient hyperspectral indices for the estimation of forest sun leaf chlorophyll
content (CHL, µg cmleaf

−2 ), sun leaf mass per area (LMA, gdry matter mleaf
−2 ), canopy leaf area index (LAI, m2

leaf

msoil
−2 ) and leaf canopy biomass (Bleaf, gdry matter msoil

−2 ). These parameters are useful inputs for forest
ecosystem simulations at landscape scale. The method is based on the determination of the best
vegetation indices (index form and wavelengths) using the radiative transfer model PROSAIL (formed by
the newly-calibrated leaf reflectance model PROSPECT coupled with the multi-layer version of the canopy
radiative transfer model SAIL). The results are tested on experimental measurements at both leaf and
canopy scales. At the leaf scale, it is possible to estimate CHL with high precision using a two wavelength
vegetation index after a simulation based calibration. At the leaf scale, the LMA is more difficult to
estimate with indices. At the canopy scale, efficient indices were determined on a generic simulated
database to estimate CHL, LMA, LAI and Bleaf in a general way. These indices were then applied to two
Hyperion images (50 plots) on the Fontainebleau and Fougères forests and portable spectroradiometer
measurements. They showed good results with an RMSE of 8.2 µg cm−2 for CHL, 9.1 g m−2 for LMA, 1.7 m2

m−2 for LAI and 50.6 g m−2 for Bleaf. However, at the canopy scale, even if the wavelengths of the
calibrated indices were accurately determined with the simulated database, the regressions between the
indices and the biophysical characteristics still had to be calibrated on measurements. At the canopy
scale, the best indices were: for leaf chlorophyll content: NDchl = (ρ925−ρ710)/(ρ925+ρ710), for leaf mass per
area: NDLMA=(ρ2260−ρ1490)/(ρ2260+ρ1490), for leaf area index: DLAI =ρ1725−ρ970, and for canopy leaf
biomass: NDBleaf = (ρ2160−ρ1540)/(ρ2160+ρ1540).

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Forest ecosystems are well-studied at the stand scale. However, in
order to better understand their functioning and response to
environmental changes, it is necessary to up-scale this knowledge to
the scale of the entire forest or small region (Landsberg, 2003; Makela
et al., 2000). Oneway to reach this objective is to use ecosystemmodels
that are validated with local-scale observations and applied to larger
areas. For a large scale simulation, a selection of spatially-parameter-
tique et Evolution, UMR CNRS -

e).
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ized input parameters is necessary. The selection of the main spatial
parameters should meet the following criteria (le Maire et al., 2005):

(i) to be a parameter to whish the model is sensitive,
(ii) to be spatially variable at the scale of interest (for instance

between stands), and to have a larger variability at this scale
than at finer scale (e.g., inter-stand vs. intra-stand variability),

(ii) to have a non-linear model response: this strengthens the need
for spatialization of the parameter if the simulation results are
averaged.

A study with a particular forest process-based ecosystem model
has shown that a number of parameters are sensitive in this model
(Dufrêne et al., 2005). Many of these parameters are spatially variable
between stands, some of them having a non-linear response (Davi
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et al., 2006). Among these parameters, in addition to soil parameters
driving the soil water budget, the following vegetation parameters
were identified:

– leaf nitrogen content (Nleaf), which is directly involved in the
photosynthesis calculation. Experimental measurements have
shown that this parameter is highly correlated with leaf chlor-
ophyll content (CHL, µg cm−2) for sun leaves (see Section 4.7),

– annual maximum leaf mass per area (LMA) of sun leaves (leaves of
the canopy that are not shadowed by other leaves), a parameter
that enables conversion of leaf area to leaf biomass (Bleaf), which is
used in many processes in the model,

– annual maximum leaf area index (LAI), which drives many
processes like radiation interception, canopy photosynthesis and
litter amount.

The objective of the present study is to assess the possibility of
estimating essential parameters of forest ecosystemmodels (LMA, LAI,
CHL and Bleaf) using hyperspectral satellite images on large areas, and
to estimate the obtained accuracy.

The use of indices on hyperspectral images has two major
advantages. First, the most informative wavelengths of the 400–
2500 nm region can be selected. Second, it allows the use of a narrow
spectrum feature necessary for assessing vegetation biochemical
properties (Broge & Mortensen, 2002). Many studies have shown that
hyperspectral measurements can be used to quantify biophysical
characteristics of the vegetation at leaf scale (Gitelson et al., 2003; le
Maire et al., 2004; Zhao et al., 2005) or at canopy scale using in situ
data, airborne sensors like AVIRIS, CASI and HyMap, or spaceborne
sensors like Hyperion and CHRIS.

Different methods exist to retrieve canopy characteristics from
reflectancemeasurements (Blackburn, 2007; Kimes et al., 2000;Weiss
& Baret, 1999):

(i) Indices and/or multiple regressions: the principle is to combine
several reflectances measured on narrow or large spectral
bands intomathematical combinations and to correlate them to
a particular characteristic of the observed surface. These
relationships are calibrated based on an experimental or
simulated reflectance database (built up on radiative transfer
models). These methods are simple, but have some limits:
when calibrated to an experimental database, the representa-
tiveness of the relationships is limited to the representativeness
of the database. Moreover, indices and multiple regressions
may be sensitive to more than one single characteristic. They
are also sensitive to atmospheric conditions, view geometry,
and spatial resolution, and therefore they must usually be
calibrated for each image.

(ii) Model inversions: this method uses models that simulate
reflectance spectra from canopy and soil characteristics. As
noted by Bacour et al. (2006), inversion techniques based on
pre-computed reflectance database are often preferred to more
computationally heavy iterative methods for operational
applications. Among the computationally efficient methods
often used are Look-Up Tables (e.g. Knyazikhin et al., 1998) and
Neural Networks (e.g. Bacour et al., 2006; Baret et al., 2007).
Both methods are dependent on the simulated training
database. Inversion of such models often gives a large number
of different possible solutions. Moreover, uncertainties in
measurements and models may result in large variation in
results (Combal et al., 2003).

The best way to find efficient indices would be to use a large
measurement database, with many images and canopy conditions.
Such a large database with hundreds of measurements is feasible at
the leaf scale but is not conceivable at the forest scale. Moreover,
indices calibrated on a particular forest canopy database could be
unsuitable in other forests.
This issue leads us to create a large synthetic database containing
reflectance spectra and their corresponding canopy characteristics.
Such a database has many advantages: many canopy characteristics
are represented (thousands of spectra); the influence of each
characteristic can be totally decoupled from that of others; and the
effect of a particular characteristic on the spectra is based on physical
processes that are modeled at a small scale. Therefore, well
established indices obtained on such a large simulated database
may potentially be applied to a wide range of spectra. However, the
use of a model relies on its capacity to correctly simulate the
reflectance of a wide range of canopies. Thus, it is essential to test
these indices on experimental measurements. The representativeness
of the simulated database is therefore critical.

In this study, we generate two simulated databases, one at leaf
scale with the PROSPECT model, and one at canopy scale coupling the
PROSPECT leaf model with the SAIL canopy radiative transfer model
(PROSAIL). At leaf scale, we continue the study done in le Maire et al.
(2004) using an improved and newly calibrated version of the
PROSPECT model (Feret et al., 2008), and a larger experimental
database. The work at this scale is a first step to interpret the results at
the canopy scale and explain possible discrepancies. At canopy scale,
we use a multi-layer version of the SAIL model (Weiss et al., 2001),
which is able to represent the vertical LMA profile. The study is
restricted to canopies with LAI greater than 3 to correspond with the
big-leaf representation of SAIL. These simulated databases are used to
find best indices of CHL and LMA at leaf scale, and CHL, LMA, LAI and
Bleaf at canopy scale.

Results are tested against measurements at both scales. At leaf
scale we used a large database of 246 spectra and 49 species. At
canopy scales, experimental measurements consist of ground mea-
surements on small and mature canopies with a portable spectro-
radiometer, and hyperspectral images for two distinct forests
measured with the Hyperion satellite.

We first describe the PROSPECT and SAIL models, simulated
databases and the determination method of best spectral indices.
Then, we present the experimental protocols for the measurements
(leaf reflectance measurements, in situ measurements and satellite
remote sensing data). The results are given at leaf and canopy scale for
the determination of CHL, LMA, LAI and leaf biomass.

2. Model description, simulated databases and best indices
determination method

2.1. The Leaf reflectance model PROSPECT

An improved (1-nm resolution) and recalibrated version of the
leaf reflectance model PROSPECT has been used in this study (Feret
et al., 2008). The PROSPECT model (Jacquemoud & Baret, 1990;
Jacquemoud et al., 1996) considers the leaf as a succession of
absorbing layers. The new version calculates the leaf hemispherical
reflectance and transmittance between 400 and 2500 nmwith a 1-nm
step as a function of leaf structure index (Nstruc), leaf chlorophyll content
(CHL, µg/cm2), leaf water content (Cw, g/cm2), and leaf mass area (LMA,
g/m2).

2.2. Multi-layer PROSAIL model description

The SAIL radiative tranfer model is a turbid medium model. It
describes the canopy as horizontally homogeneous, where leaves
absorb, reflect, and transmit radiation (Verhoef, 1984). This model has
been validated by many studies on numerous vegetation types (e.g.
Andrieu et al., 1997; Goel & Thomson, 1984; Major et al., 1992). The
radiative transfer equation is solved using an n-flux approximation.
The radiation is considered as four fluxes: diffuse, direct, upward and
downward (Kubelka & Munk, 1931; Suits, 1972). The system is
described as four differential equations for the four fluxes. The solar



Table 1
Parameters used to build the 6006 spectra of the PROSPECT database, and the 149,688
spectra of the PROSAIL database (other parameters are nadir observation, solar zenithal
angle=θ, satellite/sun angle=90°, diffuse radiation=80%, average leaf angle=27°)

Values

Minimum Step Maximum

PROSPECT database input variables
CHL (µg/cm2) 10 10 110
LMA (g/m2) 20 10 140
Cw (cm) 0.004 0.004 0.024
Nstruc 1.1 0.2 2.3

PROSAIL database input variables
CHL (µg/cm2) 10 10 110
LMA (g/m2) 20 20 140
Cw (cm) 0.004 0.004 0.024
Nstruc 1.1 0.4 2.3
LAI (m2/m2) 3 0.7 8.6
θ (°) 30 15 60
psoil 0 0.5 1
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radiation is divided into diffuse and direct, and their proportions
change with total radiation. The leaf inclination distribution function
is ellipsoidal (Campbell, 1986). The model does not represent canopy
horizontal heterogeneity (due to fractional vegetation cover, soil
variability, understory and shadowing), which can be critical for low
LAI; thus, we restricted the present study to stands of LAI greater
than 3. With this restriction, we consider the SAIL model a good
compromise among realism, computational speed, and the number
of input parameters for the present study, despite the complexity of
the studied system.

Coupling of PROSPECT and SAIL has been performed many times
(Weiss et al., 2001). PROSPECT simulates the reflectance and transmit-
tance of individual leaves, properties that are required as input into SAIL.
The basic version of SAIL represents the canopy as vertically homo-
geneous. This assumption is not true in the forest canopy, which has
vertical gradients of biophysical features (notably a gradient in LMA, see
Appendix A) that are likely to influence the overall canopy reflectance.
For this reason, the one-layer SAIL model was transformed into a multi-
layer SAILmodel, with n layers (typically 50) corresponding to n stacked
one-layer SAIL models (Weiss et al., 2001). Appendix A describes the
multi-layer PROSAIL model parameterization.

2.3. Simulated databases

Two simulated databases have been created, one with leaf
reflectances (PROSPECT) and one with canopy reflectances (PROSAIL).
Fig. 1. Process flow diagram explaining the study scheme. The das
These databases are generated using a range of input parameters, and
the reflectances are computed for every combination of these
parameters (Table 1). To ensure generalizable results, a uniform
distribution was chosen for each varied parameter, so that a
reflectance spectrum obtained with extreme parameter values has
the sameweight as other spectra on the indices' calibration procedure.
Some parameters are considered constant (see Table 1 legend).

In order to reproduce in the simulations the observed radiometric
noise of real measured reflectances, a random noise has been added to
each spectrum of both databases (leaf and canopy). This step is
important to eliminate noise sensitive indices and indices with
artificially close wavelengths (le Maire et al., 2004). An additive
random Gaussian noise with a standard deviation of 3% of reflectance
amplitude has been applied on each wavelength of each reflectance
spectrum of the PROSPECT and PROSAIL database.

2.4. Determination of best indices

Seven types of indices have been used in this study, ranging from
very simple (R) to more sophisticated (DDn) (see Table 4 in the result
section). These types of indices were obtained from a literature review
(le Maire et al., 2004). The new DDn index, based on the DD index
described in le Maire et al. (2004), shares with the DD index the same
underlying principle based on the double-peak of derivatives near the
red-edge, but the formulation is simpler:

DDn ¼ 2� ρλ− ρλ−Δ− ρλþΔ

with λwavelength in the red-edge and Δ distance in nanometers. This
index, based on the red-edge properties, cannot be used on leaves
with very low chlorophyll content (b10 µg cm−2), where the red-edge
features are less visible.

A process flow diagram is given in Fig. 1 to show the methodology
adopted in this study. The determination of indices is composed of
two steps: (1) determination of the best wavelength for a given type of
index, and (2) determination of the index vs. parameter regression
curve. A search of indices was done for CHL and LMA at leaf and
canopy level using the PROSPECT and PROSAIL databases, and for LAI
and Bleaf at canopy scale using the PROSAIL database.

The calibration is performed by testing all possible combinations of
wavelength for an index type, with wavelengths varying by 5 nm. For
each combination, index values are calculated for each spectra of the
database. A second order polynomial is fit between index values and
the characteristic to be predicted (CHL, LMA, LAI or Bleaf). Higher order
polynomialswere tested anddid not result in significant improvement.
hed line represents adaptations made to the normal process.
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The root mean square error (RMSE) is commonly used to compare
different indices and is also used in this study.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
Pi−oið Þ2

n

vuuut

with Pi the predicted value, Oi the observation for the ith spectrum,
and n the number of spectra.

For a given type of index, the best combination of wavelengths has
the lowest RMSE.

2.5. Matrix representation of RMSE

A 2-D graphical representation of RMSE has been constructed for
indices using two reflectances in two wavelengths (ρλ1 and ρλ2). The
RMSE calculated for each index is represented as a two dimensional
contour plot with axes λ1 and λ2. This representation as a matrix
contour plot has several advantages. The absolute minimum can be
directly seen, and the extent of the local minimum area can be easily
evaluated. In addition, all local low RMSE zones are visible, with their
respective RMSE values. Other studies have used such representations,
using the r-squared of the fitted relationship instead of the RMSE
(Hansen & Schjoerring, 2003). The RMSE is more useful for our
purpose because it shows the precision of the index directly, and it is
the best statistic to evaluate the error associated with the model.

3. Experimental protocols

3.1. Reflectance measurements at leaf scale

Spectra were measured for Acer pseudoplatanus (n=248) and other
temperate species (n=48) that were cultivated in a large range of
fertility, radiation and watering conditions to obtain a large range of
leaf chlorophyll, leaf dry matter and leaf water content. Reflectance
and transmittance were measured with the FieldSpec-FR spectro-
radiometer (Analytical Spectral Devices, Boulder, Colorado-USA)
coupled with an integrative sphere (Li-Cor 1800, Li-COR, Inc., Lincoln,
Nebraska, USA). Measurements of chlorophyll, LMA andwater content
are detailed in Feret et al. (2008). Hereafter, this database is called the
ANGERS database.

3.2. Ground based reflectance measurements at canopy scale

3.2.1. Study sites, LAI, CHL and LMA measurements
Ground based measurements were performed on three distinct

canopies: one small canopy of seedlings and two young forest
canopies.
Table 2
Mean values of chlorophyll content (CHL, µg cm−2), leaf mass per area (LMA, g m−2) and leaf a
minimum/maximum values are given (std and min–max)

Scale Experiment n reflec. Instrument CH

Spectrum Me

Leaf ANGERS 246 FieldSpec+sphere 35.
Small canopy Seasonal 14 FieldSpec 18.
Small canopy Spatial 4 FieldSpec 21.8
Small canopy Potted tree spacing 3 FieldSpec 23.
Small canopy Defoliation 23 FieldSpec 30.
Forest canopy Hesse 14 FieldSpec 45.
Forest Fontainebleau 14 Hyperion 55.
Forest Fougères 33 (28 for LAI) Hyperion 38.
Leaf PROSPECT 6006 Simulations 60
Canopy PROSAIL 149,688 Simulations 60

Values prescribed for simulated databases are given for comparison.
The small canopy is a 4 m2 tree plantation of 180 seedlings of
three-year-old Fagus sylvatica (beech). Young trees were about 40 cm
height in 2002. A thin layer of mould was added to homogenise the
soil surface. The small canopy is homogeneous in height, density, and
incident solar radiation, and has a LAI similar to what is observed for
an adult stand. In addition to this small canopy, some pot seedlings
were used for extra measurements.

Reflectance measurements have been done from small scaffolding
built to the north of the small canopy to avoid shadowing. This allows
easy changes to the measurement height and location.

Four different protocols were used for the small canopy, in order to
maximize the variability of LAI, CHL and LMA. These methods are
presented in Appendix B. Leaf nitrogen content was also measured for
some plots. Table 2 presents the number of reflectance spectra
measured, and the corresponding mean and range of CHL, LMA and
LAI.

Reflectance and associated biophysical measurements were also
conducted for large canopies in Hesse forest, France (48°40′N, 7°05′E,
300 m) in 2002. This forest is composed of 90% beech. Two stands of
this forest were studied: the first one (HESSE1) is a natural
regeneration of beech, age 37 years in 2002, the second one
(HESSE2) is a 10-year-old smaller regeneration with different species
(Fagus sylvatica, Quercus petraea, Quercus robur, Carpinus betulus).
Average tree heights are 17.5 m for HESSE1 and 5 m for HESSE2.
Scaffoldings on both sites allowed measurement of reflectance from
2m above the canopy and sampling of leaves for biochemical analysis.
In HESSE1, the canopy reflectance was also measured from a 30 meter
tower. LAI was estimated at both sites with a Licor LAI-2000 (LI-COR
Inc., Nebraska, USA). CHL was measured on sun leaves with a
Chlorophyll Meter SPAD-502 (Minolta Camera, Osaka, Japan). The
leaves used for these measurements were kept cold, and their LMA
was obtained following themethod described in Appendix B. A total of
14 spectra have been measured at Hesse sites (Table 2).

3.2.2. Canopy reflectance estimates with the FieldSpec spectroradiometer
All measurements were performed on clear days, with a vertical

angle of view and with the sun around local noon. The portable
spectroradiometer FieldSpec-FR was used to measure the spectral
reflectance of the canopies described above. This instrument
measures radiance through an optical fiber between 350 and
2500 nm. The spectral resolution is 3 nm in the visible and 10 nm in
the near and middle infrared. A 25 cm square panel covered by
Spectralon (Labsphere Inc., Sutton, NH, USA) material was used for the
referencemeasurements. Thismaterial is almost Lambertian and gives
very high reflectance between 350 and 2500 nm. The reflectance of an
object is the ratio of the reflected light to the incident radiance. The
incident radiance coming from the sun is measured with the Fieldspec
directed towards the Spectralon at a distance of about 10 cm. During
rea index (LAI, m2m−2) measured for the different experiments. Standard deviations and

L LMA LAI

an Min Max Mean Min Max Mean Min Max

2 0.8 107 51.4 16.5 157.2 n.a. n.a. n.a.
7 13.2 26.3 49.9 31.4 67.5 5.7 3.5 8.0

20.3 23.8 68.1 66.1 72.6 8.3 8.3 8.3
7 23.6 23.8 56.9 56.8 57.0 4.3 3.4 5.1
5 28.2 30.9 56.7 51.4 61.3 6.3 3.21 8.3
7 25.2 67.1 90.4 74.5 108.2 7.4 5.0 9.3
7 31.5 81.2 116.2 91.5 134.6 5.3 3.7 7.1
9 33.8 46.8 89.9 76.9 101.1 5.6 3.3 7.7

10 110 80 20 140 n.a. n.a. n.a.
10 110 80 20 140 5 1 9



Table 3
Characteristics of the two Hyperion satellite images: date and time of acquisition, view
and sun geometry

Site Acquisition
date

Time
UT

Sun elevation
(°)

Sun azimuth
(°)

Look angle
(°)

Fontainebleau 04 Sept 2004 1030 46.50 151.9 3.57
Fougères 06 Aug 2006 1045 53.85 143.6 1.95
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all measurements the Fieldspec sensor is fixed above the canopy, and
the Spectralon is alternately placed under the sensor for the reference
measurement or shifted away when the sensor is measuring the
canopy. To take into account error measurements and small variations
Fig. 2.Matrices representing the RMSE of leaf chlorophyll content (CHL) prediction with ND
the measurements database at leaf and canopy scale. The leaf database used is the ANGERS d
the leaf and canopy scales the RMSE with leaf chlorophyll content is represented. Value sca
in incident light that occur even on a clear day, the alternation
between reference and object radiance measurement was repeated at
least 25 times. The object radiance was divided by the mean of
reference radiances measured before and after. The quality of the 25
reflectance spectra obtained was visually checked, and spectra that
had high residuals were eliminated. Most of the time less than five
spectra were eliminated, and the remaining spectra were very similar.
The average of the remaining spectra was calculated and used for the
study as a single spectrum. Since measurements were conducted
during clear days, the signal to noise ratio is high because the solar
radiance intensity is high and temporal variations are low. Three
regions of the spectrum are noisy because of high absorption of
type indices (ND=(ρλ1−ρλ2)/(ρλ1+ρλ2)). Calculations are performed on simulations and
atabase, the canopy database is obtained with ASD measurements (see Table 2). At both
les are not the same between plots.



Fig. 3. Best leaf-scale chlorophyll index calibrated to simulations (ND935,705) and tested on ANGERS observations. Grey area covers the results for the 6006 PROSPECT simulated
reflectance. The dashed line is the second order polynomial fit to simulation results and is used for the calculation of CHLestimated (right). Black dots are the results for ANGERS
measurements.
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atmospheric water vapor (1360–1400 nm, 1820–1940 nm and 2200–
2500 nm). Note that in this study, an assumption is made that
moderate sun and/or view angles result in relatively small radiative
effects, and that neglecting soil/understory background reflectance
anisotropy is acceptable when working with data from nadir-viewing
instruments and closed canopies (for ground or satellite measure-
ments presented hereafter).

3.3. Canopy reflectance estimates with Hyperion

3.3.1. Study sites, LAI, CHL and LMA measurements
Two deciduous forest sites were chosen for satellite remote

sensing acquisition.
The first site is the Fontainebleau forest, located southeast of Paris

(48°25′N, 2°40′E, mean altitude 120 m). It is a large forest of over
17,000 ha in a region characterized by a temperate climate, with a
mean annual temperature of 10.6 °C and mean precipitation of
750 mm fairly well distributed throughout the year. This forest is
composed of oaks (Quercus robur, Quercus petraea), scots pines (Pinus
sylvestris) and beech. Only 10% of the forest is mixed.
Table 4
Leaf level indices: results of the general types of indices calibrated to the PROSPECT simula

Index type Formulation λ1 (nm) λ2 (nm) λ3 (

CHL indices, leaf level
R ρλ1 705
D ρλ1−ρλ2 980 720
SR ρλ2/ρλ1 970 710
ND (ρλ1−ρλ2)/(ρλ1+ρλ2) 935 705
mND (ρλ1−ρλ2)/(ρλ1+ρλ2−2ρλ3) 935 715 40
mSR (ρλ1−ρλ3)/(ρλ2−ρλ3) 970 715 40
DDn 2⁎ρλ1−ρ(λ1 −λ2)−ρ(λ1+λ2) 710 50

LMA indices, leaf level
R ρλ1 2300
D ρλ1−ρλ2 2395 2295
SR ρλ1/ρλ2 2295 1500
ND (ρλ1−ρλ2)/(ρλ1+ρλ2) 2295 1500
mND (ρλ1−ρλ2)/(ρλ1+ρλ2−2ρλ3) 2285 1335 240
mSR (ρλ1−ρλ3)/(ρλ2−ρλ3) 2265 1620 240
ND (ρλ1−ρλ2)/(ρλ1+ρλ2) 1710 1340

Best wavelengths were found for the PROSPECT database. RMSEPROSPECT and RMSEobservati
corresponds to an index using a local minimum for the wavelengths, and fit to observation
⁎Used on leaves with CHLN10 µg cm−2.
The second site is the Fougères Forest, located in thewest of France
(48°23′N, 1°10′O, mean altitude of 150 m). It is a smaller forest
extending over 1660 ha in a region characterized by an oceanic climate
(mean temperature 11.2 °C, mean precipitation 900 mm fairly well
distributed throughout the year). This forest is more homogeneous
than the Fontainebleau forest in terms of soil types and species (it is
dominated by beech).

These forests are actively managed by the French National Forest
Office (“Office National des Forêts”, ONF), and divided into manage-
ment units localized on a GIS database (with the software ArcGIS 8.1,
Environmental Systems Research Institute Inc., Redlands, California).
These management units, called “stands” in this study, are of similar
age and homogeneous in species, stand structure, and tree density.
The parts of the forests studied in this work have flat topography.

For the Fontainebleau forest, a total of 17 beech and oak stands
were selected. Measurements were carried out in early July 2003 for
all stands and in early September 2004, two days after Hyperion image
acquisition. For the seven stands not measured in 2004, LMA and CHL
were determined using a robust relationship established using 2003
and 2004 measurements (R2=0.85).
ted database for the CHL and LMA

nm) Regression calibrated on PROSPECT RMSEPROSPECT RMSEobservations

CHL (µg cm−2) = (µg cm−2) (µg cm−2)
1101.6R2−783.5R+147.7 13.18 7.54
1161.7D2−129.7D+4.2 10.96 8.73
212.8SR2−383.9SR+181.3 7.10 4.93
199.2ND2−13.6ND+7.16 7.16 4.65

5 141.7mND2+98.5mND+0.5 9.25 4.80
5 179.3mSR2−3.1mSR+6.1 8.46 4.87

392.8DDn2−171.8DDn+24.7 6.53⁎ 8.36⁎

LMA (g m−2) = (g m−2) (g m−2)
526.9 R2−510.6R+129.4 31.9 28.0
(5.6D2−2.1D+0.2)⁎103 25.2 29.8
−48.6SR2+276.9SR−259.0 16.1 24.4
734.9ND2+358.7ND−34.1 15.9 24.2

0 237.2mND2+53.9mND−91.0 19.2 26.3
0 −1.3mSR2−51.7mSR−66.9 21.2 28.3

(see legend) 16.4

ons values are obtained with the second-order fit to PROSPECT. The last line in italics
s: LMA=1986.2ND2+401.6ND−15.3.
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For the Fougères forest, 33 beech stands were chosen. Measure-
ments were carried out in June 2006. The same measurement
protocols were used in Fontainebleau and Fougères. Within each
stand, 5 to 15 representative trees were selected for CHL and LMA
measurements (on sun leaves). The LAI-2000 was used for ground LAI
measurements.

Details of the measurements for CHL, LMA and LAI are given in
Appendix C.

In order to test the validity of the stand as a measurement object,
analysis of variance (ANOVA) tests were performed on CHL and LMA
measurements to detect if CHL and LMA were actually statistically
variable among stands. The 5 to 15 trees per stand were used as a
Fig. 4. Matrices representing the RMSE of leaf mass per area (LMA) prediction with ND type
measurements database at leaf and canopy scale. The leaf database used is the ANGERS datab
leaf and canopy scales the RMSE with leaf mass per area is represented. Value scales are no
group of values for which the intra-group and inter-group variance
were calculated and compared. Results show that there is a stand
effect in Fougères and Fontainebleau for CHL and LMA (pb0.05). This
reinforces the choice of the stand as studied object, and the need to
obtain stand-scale estimations of CHL and LMA for inputs to
ecosystem models.

3.3.2. Hyperion image acquisition and processing
The Hyperion imaging spectrometer onboard the NASA Earth

Observing-1 spacecraft is a push broom sensor that provides 242
spectral bands at 10 nm intervals over the 400–2500 nm region. The
spatial resolution is 30m, and an image is 7.7 kmwide and 42 km long.
indices (ND=(ρλ1−ρλ2)/(ρλ1+ρλ2)). Calculations are conducted on simulations and the
ase, the canopy database is obtained with ASD measurements (see Table 2). At both the
t the same between plots.
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Some of the bands are not calibrated and thus not usable. Other bands
are not used in this study because of very low signal to noise ratio due
to atmospheric absorption. Here, 165 bands out of the 242 have been
used (bands 8–57, 80–120, 130–163, 185–224).

Two images were acquired: one above Fontainebleau forest and
one above Fougères (see specification on Table 3). These images are
cloud free above the forest, but the Fougères image shows some
clouds around it. A series of processing steps were necessary to obtain
the final reflectance of the stands (Appendix D).

For both sites, polygons were drawn to select the sampled portion
of the stands. A 30 meter buffer was applied to avoid edge effects. The
reflectance spectra of selected pixels were extracted and averaged to
obtain an average reflectance for each stand. The use of the reflectance
is therefore based on spatially coherent objects, and this has been
shown to be an efficient way to obtain meaningful estimations of
canopy biophysical variables (Atzberger, 2004).

4. Results

4.1. Leaf scale CHL indices

The ND type index, which is a normalized difference of two
wavelengths, is calibrated on the PROSPECT simulated reflectance
database. Fig. 2a shows the RMSE represented as contour plots. All
local minima have RMSE values better than 10 µg cm−2. The size of
these areas gives visual information on the necessary spectral
precision. The plot is shown between 400 and 1000 nm because no
significant additional information is found after 1000 nm for CHL.

A contour plot is obtained in the same way for the measurement
database (Fig. 2b.). The two contour plots (a) and (b) are very similar in
Fig. 5. Best leaf-scale LMA index calibrated to simulations (ND1500,2295) and tested on ANG
(ND1340,1710) results are also presented (bottom).
terms of RMSE values and patterns. These similarities give confidence
in the model's ability to simulate the behavior of a ND type index in
relation to CHL for a wide range of wavelengths.

From PROSPECT simulations, the best index is ND935,705, with a
RMSE of 7.16 µg cm-2. Fig. 2a shows that the important wavelength of
this index is λ2=705 nm, whereas the other wavelength can be ranged
between 750 and 1000 nm without affecting much the predictive
strength of the index. Another zone of minimum RMSE is the zone
with λ2 2[550–600 nm] and λ1 2[750–1000 nm]. This area is larger,
which means that these indices do not require very narrow and
precise spectral bands.

Fig. 3a shows the relationship between CHL and the ND935,705

index for simulated and measured reflectances. This index is efficient
because it meets the three following conditions: (i) the area of the
simulation results shows no saturation and a narrow dispersion of
predictions, (ii) the measurements are well-aligned, and (iii) there is a
very good match between simulations and measurements, with only
few points outside the boundaries of the simulated database and no
bias (Fig. 3b).

Fig. 3b shows the relationship between measurements and
predictions using a second order polynomial fit calibrated from
PROSPECT simulations (see Table 4). The RMSE of the estimation of
measurements is 4.65 µg cm−2.

Other types of indices have also been tested and are reported in
Table 4. For each type of index, the one giving the best RMSE for the
simulated database is reported in Table 4 with its wavelength(s), its
regression equation and its RMSE for the simulated database. Finally,
the validation RMSE is calculated for the experimental database
ANGERS and also given in the Table 4 (RMSEobservations). The results
show that ND is the best index for the simulated database.
ERS observations (top). For comparison, the best LMA index calibrated to observation
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4.2. Leaf scale LMA indices

Table 4 shows that the ND type index is the most recommended
index for leaf LMA prediction for calibration and validation with
respect to RMSE. There is no improvement when using more
sophisticated indices like mND and mSR types.

RMSEmatrices for LMA estimated from PROSPECT simulations and
measurements are represented in Fig. 4 for ND indices. The spectral
range is increased because most of the dry matter signal is in the near
and middle infrared. The order of magnitude of the RMSE for the
PROSPECT database is higher than for CHL: the RMSE simulated is
about 25% of the LMA values, whereas it is about 15% for CHL. The
comparison with the matrix obtained for measurements shows
similarities in the regions of low RMSE, but discrepancies in their
relative values. In fact, the main minimum area in simulations
(λ1=2100 to 2300 nm and λ2 around 1500) is not the main minimum
area in the RMSE matrix of measurements (Fig. 4a; Table 4). Fig. 5a
shows the plot of the best ND index calibrated to simulations
(ND2295,1500) against LMA: the simulation points cover quite a large
area, whichmeans that the best index found for simulations has a high
associated error. The measurements are very scattered, and some of
the points fall outside the boundaries of the simulations. Even if the
relationship is significant between the index and ND, the use of this
index for LMA estimations would lead to high error.

For comparison purposes, the best index found on the experi-
mental database ND1710,1340 was plotted (Fig. 5b and c). This figure
Table 5
Canopy level indices: results of the 7 general types of indices calibrated to PROSAIL simulat

Index type Formulation λ1 (nm)

CHL indices, canopy level
R ρλ1 710
D ρλ1−ρλ2 705
SR ρλ2/ρλ1 710
ND (ρλ1−ρλ2)/(ρλ1+ρλ2) 710
mND (ρλ1−ρλ2)/(ρλ1+ρλ2−2ρλ3) 715
mSR (ρλ1−ρλ3)/(ρλ2−ρλ3) 720
DDn 2⁎ρλ1−ρ(λ1-λ2)−ρ(λ1+λ2) 730
ND (ρλ1−ρλ2)/(ρλ1+ρλ2) 710

LMA indices, canopy level
R ρλ1 1100
D ρλ1−ρλ2 2380
SR ρλ2/ρλ1 2280
ND (ρλ1−ρλ2)/(ρλ1+ρλ2) 2280
mND (ρλ1−ρλ2)/(ρλ1+ρλ2−2ρλ3) 2275
mSR (ρλ1−ρλ3)/(ρλ2−ρλ3) 2275
ND (ρλ1−ρλ2)/(ρλ1+ρλ2) 2260

LAI indices
R ρλ1 925
D ρλ1−ρλ2 1725
SR ρλ2/ρλ1 925
ND (ρλ1−ρλ2)/(ρλ1+ρλ2) 925
mND (ρλ1−ρλ2)/(ρλ1+ρλ2−2ρλ3) 1195
mSR (ρλ1−ρλ3)/(ρλ2−ρλ3) 1195
NDVI (ρλ1−ρλ2)/(ρλ1+ρλ2) 800

Bleaf indices
R ρλ1 1100
D ρλ1−ρλ2 1720
SR ρλ2/ρλ1 2245
ND (ρλ1−ρλ2)/(ρλ1+ρλ2) 2190
mND (ρλ1−ρλ2)/(ρλ1+ρλ2−2ρλ3) 1375
mSR (ρλ1−ρλ3)/(ρλ2−ρλ3) 1380
ND (ρλ1−ρλ2)/(ρλ1+ρλ2) 2160

Best wavelengths are found for the PROSAIL database. Results in italics represent theminimu
and the relationship between the index and the characteristic leads to insignificant results w
order fits on observations: CHL=162.8ND2-41.8ND+6.8; LMA=−134.4ND2+350.0ND+33.1;
⁎Used on leaves with CHLN10 µg cm−2.
shows that even the best index calibrated to the experimental
database shows high scattering: the RMSE is 16.4 g m−2 in this case.
This means that the LMA is a much more difficult leaf characteristic to
capture with reflectance indices.

4.3. Canopy scale CHL indices

At canopy scale, the PROSAIL database is used to find the best
indices. SR and ND types of indices give slightly lower RMSE values
than other types of indices (Table 5). The general pattern of the matrix
representation of ND type of indices is similar to that obtained at the
leaf level, except that the absolute level of RMSE is higher (Fig. 2c). At
canopy level, the area with λ2 2[400–500 nm] and λ1~710 nm and
the area with λ2~710 nm and λ1 2[750–1000 nm] are the most
efficient ones for simulations.

Interestingly, the location of the RMSE minima areas are similar to
the coefficient of correlation map obtained by Hansen and Schjoerring
(2003) for chlorophyll density on wheat. Comparison of the RMSE
matrix obtained from our small canopy scale measurements with
those from a portable spectroradiometer also reveals many simila-
rities in areas of minimumRMSE. It confirms the ability of the PROSAIL
model to simulatewell the link between ND spectral index and canopy
leaf chlorophyll content.

The absolute minimum of simulations is located at wavelengths
710 and 400 nm. This particular index gives good results at the small
canopy scale (FieldSpec measurements) (Fig. 2d). However, this index
ed database for the four characteristics

λ2 (nm) λ3 (nm) RMSEPROSAIL RMSEobservations

(µg cm−2) (µg cm−2)
10.03 n.s.

505 9.98 n.s.
400 9.92 n.s.
400 9.84 n.s.
860 455 9.94 n.s.
860 450 9.98 n.s.
50 9.95⁎ n.s.

925 n.s. 8.24

(g m−2) (g m−2)
21.89 n.s.

2300 18.35 n.s.
1395 14.55 n.s.
1395 14.14 n.s.
1920 1520 14.91 n.s.
1920 1520 14.54 n.s.
1490 n.s. 9.15

(m−2 m−2) (m−2 m−2)
1.55 n.s.

970 1.31 1.71
400 1.62 n.s.
400 1.62 n.s.

2220 915 1.69 n.s.
2220 915 1.69 n.s.
680 1.78 n.s.

(g m−2) (g m−2)
117.9 n.s.

1470 93.2 n.s.
1395 75.4 n.s.
1390 75.1 n.s.
2400 2265 79.2 n.s.
2400 2190 77.4 n.s.
1540 n.s. 50.6

m for another local minimum area. “n.s.” are not significant results, meaning that indices
hen applied to observations. RMSEobservations values are obtained with following second-
LAI=70.8D2+38.2D−8.0; Bleaf =250.5ND2+1269.4ND−82.1.



Fig. 6. Best canopy-scale chlorophyll index calibrated to simulations (ND925,710) and tested on small canopy and Hyperion observations. Grey area covers the results for the PROSAIL
149688 simulated reflectance. The dashed line is the second order polynomial fit to observations and is used for the calculation of CHLestimated (right).
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cannot be used with Hyperion data because most of the bands below
450 nm have too low signal-to-noise ratios. Instead we focused on the
λ1 2[720–1000 nm] and λ2~710 nm region, which is the second
minimum of the simulations (Fig. 2c). We choose the local minimum
at 925 nm and 710 nm for the simulation database (in the same
minimum area, Hansen and Schjoerring obtained 732 nm and 717 nm
on their experimental database).

Fig. 6a shows that the λ1=925 nm and λ2=710 nm index gives
fair results for simulations, the width of the simulation point zone
being larger than at leaf scale, but the relationship has low
saturation. When adding data from the different experiments
(FieldSpec measurements, Hyperion at Fougères and Fontaine-
bleau), most of the points are within the boundaries of the
simulations. There is a good match between the points from
ground measurements and those from Hyperion reflectances. The
points measured in the tall forest at Hesse fell within the same
range of chlorophyll content and index values than the points
measured with Hyperion. Considering only Hyperion data, the
regression between ND925,710 and CHL is significant (pb0.05) for
the Fontainebleau forest but not significant for the Fougères forest.
Fig. 7. Best canopy-scale LMA index calibrated to simulations (ND1490,2260) and t
This is mainly due to the range of CHL values that is higher in
Fontainebleau than in Fougères (Table 2). Contrary to simulation
results, a saturation appears with measurements when the
ND925,710 value is greater than 0.65. This leads to an under-
estimation of CHL for values of CHL greater than 50 µg cm−2.

When using a regression between the index and CHL calibrated to
the simulation database, the CHL is predicted with a RMSE of 8.86 µg
cm−2. If the regression is calibrated to measurements, the RMSE is
slightly reduced to 8.25 µg cm−2 (Table 5).

The ND925,710 index was found to be significantly correlated to leaf
chlorophyll content in earlier studies (Hansen and Schjoerring, 2003;
Zarco-Tejada et al., 2004b; Zarco-Tejada et al., 2001), with the 925 nm
wavelength being sometimes 800 or 750 nm (same minimum area in
Fig. 2). The wavelength near 710 nm, in the red-edge zone, is essential
in this index (Fig. 2).

4.4. Canopy scale LMA indices

The RMSE matrix calculated for the PROSAIL simulations for ND
type of indices is very similar to that obtained at the leaf scale with
ested on small canopy and Hyperion observations. See Fig. 6 for the legend.



Fig. 8. Matrices representing the RMSE of leaf area index (LAI) prediction with ND type indices (ND=(ρλ1−ρλ2)/(ρλ1+ρλ2)) (a and b) and D type indices (D=(ρλ1−ρλ2)) (c and d).
Calculations are done on simulations and the measurements database at canopy scale. The canopy database is obtained with ASD measurements (see Table 2). The RMSE with leaf
area index is represented. Value scales are not the same between plots.
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PROSPECT simulations (Fig. 4a and c). The matrix obtained at the
small canopy scale (Fig. 4d) has the same pattern as that calculated
from leaf scale measurements for λ1 and λ2 above 1400 nm. Some
similarities are found between the simulation and measurement
matrices, with the λ2~1500 and λ1 2[2100–2300 nm] region
appearing in both contour plots.

The absolute minimum is obtained with the index ND2280,1395

(Table 5). However, this index belongs to a very small minimum area,
which means that the 1395 nm wavelength is absolutely necessary.
This wavelength is in a spectral region of high water vapor absorbance
by atmosphere, and is therefore not suitable for measurements under
natural atmospheric conditions. As a consequence, the second
minimum area was chosen with the index ND2260,1490.
Fig. 7 shows that the relationship between the PROSAIL-based
ND2260,1490 index and the canopy LMA is very scattered. This index gives
fair results when applied to measurements. First of all, most of the
measurements are within or close to the boundaries of the simulations.
They are well aligned between small scale measurements and
measurements with Hyperion. However, if solely Hyperion measure-
ments are used for a particular forest, the relationship is only significant
for Fougères.We can see from simulations that this index is less efficient
for high LMA, which can explain part of the poor results obtained for
Fontainebleau, which has higher LMA values (Table 2).

When the regression on simulations is directly used, the RMSE of
the LMA estimation from the ND2260,1490 index is unacceptable
(35.3 g m−2), with a general tendency to underestimate the LMA by



Fig. 9. Best LAI index calibrated to simulations (D970,1725) and tested on small canopy and Hyperion observations. See Fig. 6 for the legend.

Fig.10.Matrices representing the RMSE of total leaf dry biomass (Bleaf) predictionwith ND type indices (ND=(ρλ1−ρλ2)/(ρλ1+ρλ2)). Calculations are performed on simulations and the
measurements database at canopy scale. The canopy database is obtained with ASD measurements (see Table 2). The RMSE with leaf biomass is represented. Value scales are not the
same between plots.

Fig. 11. Best Bleaf index calibrated to simulations (ND1540,2160) and tested on small canopy and Hyperion observations. See Fig. 6 for the legend.
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Fig. 12. Nitrogen content (N, mg/g) as a function of CHL (µg/cm2) for sun leaves of Oak
and Beech measured at the Fontainebleau forest (N=0.1185CHL+18.42; r2=0.66;
pb0.001).
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about 20 g m−2. When using the regression based on measurements,
the RMSE of the ND2260,1490 index becomes 9.15 g m−2 (Table 5), which
is much more satisfactory.

4.5. Canopy scale LAI indices

For LAI estimation (with LAI greater than 3 in this study), the best
index found is of D type, which is a simple difference between two
wavelengths (Table 5). This is a surprising result, since most of the
time ND type indices are used, especially the NDVI (=ND800,680). RMSE
matrices are calculated for these two types of indices for both
simulations and measurements (Fig. 8). We find that ND types have a
minimum zone with λ2 2[400 500 nm] and λ1 2[780 1000 nm]
(RMSE=1.62 m2 m−2, Table 5). The NDVI zone (i.e. ND800,680) does not
appear as efficient for the simulation database (RMSE=1.78 m2 m−2,
Table 5). Comparison between PROSAIL simulations andmeasurement
matrices show many discrepancies, meaning that PROSAIL does not
represent well the relationship of the ND index with LAI.

This matrix remains unchanged if we use a third order polynomial
or a (−1/ln(ND)) transformation instead of a second order polynomial
to fit the ND vs. LAI relationship. For the D type of index, RMSE
Fig. 13. Representation of lower RMSE zones for ND indices (ND=(ρλ1−ρλ2)/(ρλ1+ρλ2)) for
Nstruc is PROSPECT leaf structure parameter, Cw is leaf water content. Non-significant indi
matrices from PROSAIL simulations and from measurements show a
similar pattern. The RMSE range for the D type of index is also better
than the ND type for measurements (best indices 1.62 m2 m−2 for ND
type, 1.31 m2 m−2 for D type).

The best index found for simulations is the index D1725,970, which
does not use reflectance in the visible. This index gives reasonable
results: there is a good match between simulations and measure-
ments, andmeasurements arewell aligned between FieldSpec and the
two Hyperion images (Fig. 9). Regression between the indices and LAI
is significant (pb0.05) for both the Fougères and Fieldspec measure-
ments, but not for the Fontainebleau forest. The regression could be fit
either to simulations or to measurements, and gives similar RMSE
values (1.71 m2 m−2 when fitted to simulations). These results show
that prediction for high values of LAI remains a problemwith this type
of index because of its saturation for LAI greater than 3–4. This is awell-
known problem with the index-based prediction of LAI, as shown in
previous studies (Anderson et al., 2004; Birky, 2001; Fassnacht et al.,
1997; Qi et al., 2000; Soudani et al., 2006; Wang et al., 2005). It can be
overcome in this type of ecosystemusing other information like spatial
variability (le Maire et al., 2006).

4.6. Canopy scale Bleaf indices

Leaf biomass is calculated as the product of the LMA profile and
LAI. Table 5 shows the best indices for Bleaf estimation found for the
PROSAIL database. The best indices found are the ND, SR, mND, and
mSR types. However, like LMA indices, they have one of their
wavelengths in an atmospheric water vapor high absorption band,
and therefore cannot be tested against measurements. When
discarding water absorption areas, ND1540,2160 becomes the best
index for Bleaf estimation. Fig. 10 shows that the RMSEmatrix of Bleaf is
a combination of the LMA and LAI matrices (Figs. 4 and 8), with LMA
characteristics highly visible in the ND1500,2200 region. Comparison
with the measurements matrix shows many discrepancies, mainly
from differences between these measured and simulated LAI ND
matrices (Fig. 8a and b).

Results for the ND1540,2160 index are shown in Fig.11. There is a high
bias between simulations and measurements. Indices simulated by
PROSAIL are too high. When fit to measurements, regression between
the ND1540,2160 index and Bleaf is significant at the Fontainebleau site
with pb0.05, and p=0.07 at Fougères site, with a global RMSE of
50.6 g m−2.
leaf-scale PROSPECT simulations (left) and canopy-scale PROSAIL simulations (right).
ces zones (n.s.) give high RMSE for all five parameters.
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4.7. Nitrogen determination

Although CHL is a physiological indicator of stand health condi-
tions, which can potentially justify its direct use, CHL estimations
cannot be directly used as input parameters in forest ecosystem
models (contrary to LMA, LAI and Bleaf). Instead, photosynthesis
models use nitrogen concentration by leaf area for each LAI layer of
the canopy. The nitrogen content of sun leaves (Nm, in mg g−1 of leaf
dry matter) is linked to the CHL content by unit area (µg cm−2) (Fig. 12
and (Filella et al., 1995; Moran et al., 2000; Yoder and Pettigrew-
Crosby, 1995)) and is approximately constant from the top to the
bottom of canopy (Appendix A, Fig. A1). To retrieve the nitrogen
content per leaf area (Na, in g m−2) profile from hyperspectral data,
one can follow the following steps using the results given in this
study:

1- estimate the LAI using the D1725,970 index or another method
2- estimate the sun leaves LMA using the ND2260,1490 index
3- calculate the LMA profile using total LAI found in step 1 and the

extinction coefficient with the equation in Appendix A
4- estimate the sun leaves CHL using the ND710,925 index
5- estimate the sun leaves Nm from CHL values (Fig. 12)
6- estimate the Na profile using LMA profile and assuming a constant

value of leaf Nm.

This method is associated with a number of errors resulting from
estimation uncertainties and hypotheses about vertical profiles. This
method gives slightly better results than the direct correlation
between nitrogen and the reflectance spectrum mainly because
there is a greater signal from the chlorophyll content on the spectral
reflectance. The RMSE for estimating sun leaves Nm is 2.7 mg g-1 for
the direct method and 2.3 mg g-1 for the CHL-based method (results
are based on the 18 cases where nitrogen measurements were
available). This gives an error of 13.6% of the mean, a value near that
obtained by Coops et al. (2003) and Smith et al. (2003) with Hyperion
data. Another advantage is the use of simulated reflectance, which is
possible with the chlorophyll method.

5. General discussion

Results at canopy scale varied from good (CHL and LMA) to fair (LAI
and Bleaf) with thewavelengths determined on the synthetic database.
However, the regression between indices and biophysical character-
istics had to be calibrated to measurements. The error observed with
simulation-based regressions may be due either to errors in the
PROSAIL model, to a bias in the simulated database inputs, or both.

The PROSPECT sub-model of PROSAIL was shown to perform well
at leaf scale, except for LMA retrieval: the sun-leaf LMA at canopy level
was obtained with an overall error of 11 g m−2, although it was 16.4 g
m−2 on leaf level for the best indices. This result is surprising because
up-scaling generally increases errors and noise. This may be due to the
fact that at leaf scale the experimental database was created to have a
very large range of variability in species and growth conditions. In
contrast, measurements on forests show less variability (Table 2).

More generally, measurements at canopy scale may not be
extensive enough to represent the simulation database range, or the
simulation database may be too broad compared to measurements,
whichmay create a bias. Table 2 shows that the range of LMA, CHL and
LAI used for simulations are similar to measured values, but this may
not be the case for other SAIL inputs like leaf angle.

Concerning the models, the PROSPECT sub-model of PROSAIL was
shown to perform well at leaf scale. The PROSAIL model has proven
efficient in the findingof indices (see RMSE matrices). However, it is
possible that the relatively simple SAIL model does not accurately
simulate the absolute value of the reflectance of a tree canopy because
canopies are never perfectly homogeneous, even with a LAI greater
than 3 (as considered in this study). Zarco-Tejada et al. (2001) have
shown that for closed canopies of deciduous stands with LAI greater
than 3, there was practically no shadow effect when pigment-
sensitive indices, rather than entire canopy reflectance spectra, are
simulated with models and compared to observed above-canopy
reflectances. For LAIb3, some particular effects of clumping and
shadows are included in other radiative transfer models (Gastellu-
Etchegorry et al., 1996; Huemmrich, 2000) that may be used instead of
SAIL to generate another database.

The database computation might be improved in some particular
aspects: more types of soils, understory, and variation of other
parameters like leaf angle or sun and view angles. One other way to
proceed would be to create more targeted database using a priori
knowledge of the measured canopy, and therefore limit the range of
parameter variation.

Most types of indices were originally designed to be insensitive to
specific changes of the reflectance spectrum. For instance, the D-type
(simple difference between two wavelengths) is insensitive to
additive changes of the reflectance, and the simple ratio (SR) and
normalized difference (ND) types are insensitive to proportional
effects. mND and mSR types of indices are insensitive to both additive
and proportional effects. Our results show that taking into account the
additive effects improves the efficiency of the index, since D-type
indices give better results than simple R-type indices. Taking into
account the proportional changes improves the results even more
(SR compared to R-types) for all characteristics except LAI.

This is due to the fact that most of the leaf or canopy characteristics
influence the spectra more in a proportional way than in an additive
way. mSR and mND types in particular are insensitive to constant and
proportional changes of reflectance, but our results show that they do
not perform any better than ND indices, mostly because the inclusion
of a supplementary wavelength increases the sensitivity to noise in
the reflectance spectra and subsequent scattering.

Another advantage of the method is that it gives confidence in the
generic character of the indices that were found at the leaf scale.
Indeed, PROSPECT model was built to be as generic as possible, and
was shown to be applicable to very different species, and even to
needles (Zarco-Tejada et al., 2004a). One can say that changing the
input parameters of PROSPECT or changing the species is the same
thing. This generic character has been tested on the leaf reflectance
database that has 49 different species.

At the canopy scale, things are very different because PROSAIL
model cannot represent every possible forest. It represents a
homogeneous closed canopy, without leaves or tree clumping, with
particular soils and other characteristics (specified in the methods
section for this study).

The methodology employed in this study, which uses a simulated
reflectance database, has the major advantage of avoiding problems of
covariance that often occur on measurement based studies. Indeed,
when a measurement database is created at leaf or canopy level, some
of the measured characteristics may have significant covariance. As a
consequence, an index calibrated for a particular biophysical char-
acteristic could in reality be linked to another characteristic. For
instance, if measurements are conducted seasonally at different dates
of growing season, there is a correlation between LAI and LMA. This
decreases the generic application of such empirically-based indices.
Using models avoids such problems because we can build simulated
databases with independent variation of each characteristic. This gives
strength and confidence to the indices we found.

Going further, we can say that the indices found for the
simulation databases are exclusive, i.e. if an index is highly correlated
to a particular characteristic, it cannot be correlated to another. This
simple deduction enables a gross illustration as a matrix. Fig. 13
shows the areas of the ND index that give the best RMSE for the
estimation of each input parameter of the PROSPECT and PROSAIL
models. The area in grey does not correlate well to any input
parameters (i.e. is sensitive to more than one parameter). Notably,
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the up-scaling from leaf to canopy level modifies the arrangement of
the efficient ND regions. The CHL and LMA regions basically remain
the same between both scales, which means that no other physical
variables added in the change of scale influence the indices in these
regions. In contrast, the Nstruct regions change substantially between
the scales because of LAI, which has an effect that is very similar to
Nstruct. Most of the time Nstruct regions are replaced by Cw regions.
Note that at canopy scale the LAI regions are underestimated since
the representation is based on an ND index instead of a D index,
which is better for LAI determinations.

A closer look at the obtained indices reveals interesting features. A
common characteristic is that one of the two reflectances is correlated
to the studied parameter (ρ710 nm for CHL, ρ2260 nm for LMA, ρ970 nm
for LAI, and ρ2160 nm for Bleaf), whereas the other is not correlated. For
the CHL the most sensitive wavelength is located in the red-edge
region near the red peak chlorophyll absorption because of less
saturation for high chlorophyll content. Concerning LMA, the wave-
length around 2260 nm corresponds to the better compromise
between low water specific absorption and high dry matter specific
absorption (according to PROSPECT). Notably, the other wavelength,
1490 nm, has almost exactly the same water specific absorption
coefficient as the 2260 nm wavelengths (23.2 cm−1 and 22.0 cm−1,
respectively). Since reflectance is exponentially correlated to the sum
of absorption of the different absorbing components, the use of ratio
based indices (such as ND and SR) with two wavelengths having the
same specific absorption coefficient (here 1490 and2260nm forwater)
cancel out the effect of this component. This explains why the NDLMA

index is strongly related to LMA and almost insensitive to leaf water
content, even if the selected wavelengths are in the SWIR region.
Concerning LAI, the selected sensitive wavelength corresponds to a
region of high scattering effects inside the canopy (970 nm), whereas
the other one (1725 nm) corresponds to a region of high water
absorption and low reflectance value. Bleaf wavelengths (1540 nm and
2160 nm) are more influenced by LMA wavelengths than LAI
wavelengths.

The wavelengths we found are generally consistent with the
findings of Thenkabail et al. (2004), who recommended 22 bands for
multi-spectral remote sensing of vegetation. Our CHL ND index
(710 nm and 925 nm) combines Thenkabail's bands 5 (705 nm, Red-
Edge 1) and 8 (915–935 nm, NIR2). Our LMA ND index (1490 nm and
2260 nm) is close to Thenkabail's bands 15 (1445 nm, EMIR1, sensitive
to plant moisture) and 20 (2235 nm, FMIR3, sensitive to lignin,
biomass and starch). Our LAI D index (970 nm and 1725 nm) is close to
Thenkabail's bands 9 (985 nm,MSNIR, sensitive to plantmoisture) and
17 (1725 nm, EMIR4, sensitive to biomass, cellulose and lignin). Our
leaf biomass ND index (1540 nm and 2160 nm), however, is not close
to any of Thenkabail's bands.

6. Conclusion

To obtain generic and widely applicable canopy biophysical
indices, the methodology chosen was to find the best possible indices
without a priori knowledge of wavelengths, by testing every possible
combination on a synthetic database. At the canopy level, results from
very different experimental datasets were found to be consistent and
well aligned for each retrieved quantity (CHL, LMA, LAI and Bleaf). The
results are strengthened by the experimental aspect of this work
based on two different sites, and two different satellite images, with
different local (soil types, fertility, age of the forest, species mixture
and sampling date) and remote-sensed image conditions (atmo-
spheric conditions, angles of view and sun). The obtained indices were
found to apply successfully to both sites (between Fougères and
Fontainebleau) and sensors (Hyperion or in situ Fieldspec). This gives
more confidence in carrying on the development of a regression
approach based on synthetic data and avoiding in situ measurement
calibration.
The best indices at canopy scale are for leaf chlorophyll content:
NDChl ¼ ρ925−ρ710

ρ925þρ710
, for leaf mass per area: NDLMA ¼ ρ1490−ρ2260

ρ1490þρ2260
, for leaf area

index: DLAI=ρ970–ρ1725, and for canopy leaf biomass: NDBleaf ¼ ρ1540−ρ2160
ρ1540þρ2160

.
They showedgood resultswith anRMSEof 8.1 µg cm−2 for CHL, 9.1 gm−2

for LMA, 1.7 m2 m−2 for LAI and 50.6 g m−2 for Bleaf. However, at the
canopy scale, even though thewavelengthswere accurately determined
with the simulated database, the regression itself had to be calibrated
with respect to measurements.

In this study, we used only narrow band indices, but our results
suggest that for some indices larger bands could be used. This is the case
for ND types, where there are large areas of low RMSE in the RMSE
matrix. It is also possible to imagine indices combining spectral bands of
different sizes. For instance, in the CHL index ND710,925, a narrow band
close to 710 nm and a larger band between 800 and 1000 nm could be
used. The best signal-to-noise ratio in the near infra-red region can be
achieved without reducing the ability to retrieve canopy variables.

The methodology and published indices should now be tested on
other images, sites and canopies to see if the presented results are
confirmed in terms ofwavelength, regression relationships and accuracy.
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Appendix A. Description of the multi-layer PROSAIL
model parameterization

Gradients of LMA and CHL were measured on Fagus sylvatica and
Quercus petraea at the Hesse forest and are presented in Fig. A1. The
LMA exponentially decreases inside the canopy, and is a function of
the cumulative LAI.

LMAi ¼ LMA0 � exp −kLMA ∑
i

j¼0
LAIj

 !

where i stands for the layer number from the top, LMAi and LAIi are
the LMA and LAI of the jth layer, and kLMA is a constant. kLMA (0.18)
was obtained at the Hesse site and is very close to other values given in
the literature (Davi, 2004), which gives confidence in its generality for
broadleaved deciduous trees. The values of LMA0 and the LAI profile
are the input parameters of the multi-layer PROSAIL.

Chlorophyll per unit of leaf surface is approximately constant
inside the canopy (Fig. A1). This is not always true: some stands show
up to a 20% a decrease from top to bottom, while others show an
increase. Tests have shown, however, that including a slight vertical
profile of CHL does not significantly change PROSAIL output.

The structural parameter of PROSPECT is also considered constant
inside the canopy. There is experimental evidence that the Nstruc

(introduced in 2.1) parameters are correlated to the LMA of the leaf,
and therefore should decrease from the top to the bottom of the
canopy. However this correlation is weak, so it is not possible to
directly obtain it from LMA.

The leaf angles are generally more erectophile at the top layers and
planophile at the bottom layers. For example, the mean angle of a
Nothofagus solandri canopy changes from 40 to 20° from top to
bottom (Hollinger, 1989). The vertical distribution of the leaves is due
to the radiation gradient inside the canopy. For the simulations, we
have considered the leaf angles to be constant from top to bottom,
mainly because there are very few data to calibrate an appropriate
model of vertical leaf angle distribution.



Fig. A1. Vertical profile of LMA (g m−2), CHL (μg cm−2) and N (mg g−1) measured at Hesse site on two different stands (HESSE1 left and HESSE2 right). Layer thickness is about 1 m.
Measurements have been made from top (sun leaves) to bottom. HESSE1 and HESSE2 are about 17 .5 m and 5 m height, respectively.
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The soil reflectance is obtained from measurements of two soils: a
brown dry soil and a wet soil (Broge and Leblanc, 2001). The soil
reflectance is calculated as a weighted mean of these two soil
reflectances, with the parameter psoil equal to 0 for wet soil and 1 for
dry soil. This very simple model was able to capture the main soil
features by a direct fit. Three soils were used in the database
corresponding to the two extremes (psoil=0 and psoil=1) and an average
soil (psoil=0.5).

Appendix B. Small trees canopy: LAI, LMA, CHL and canopy
reflectance measurements

B.1. Seasonal monitoring

A temporal series of measurements was conducted during the
2002 growing season from leaf budburst to yellowing at two different
places in the small canopy. Reflectance measurements were made at
one meter height, with the sun close to its zenith (local noon) and
clear sky (see reflectance measurement protocol at chapter 2.2.2). In
parallel, chlorophyll was measured on sunleaves with a SPAD (Minolta
Camera, Osaka, Japan) chlorophyll meter (average of about 100
measurements on 20 leaves). SPAD values were converted to
chlorophyll values using a precisely calibrated relationship (CHL=
−0.00023453 ⁎ SPAD3+0.0626 ⁎ SPAD2−1.1372401 ⁎ SPAD+10.33).
SPAD measurements were also made on the top, middle and bottom
layers to ensure that it did not change vertically. LMA was measured
by taking 10 sunleaves just around the measurement footprint to
avoid changing the canopy structure between two measurements.
Leaf surfaces were measured, oven dried and weighted to obtain their
LMA. The LMA vertical decrease was also measured. Concerning the
LAI, because destructive measurements were not possible, we directly
measured all leaf surfaces using a relationship Surface=0.71⁎L⁎w
(L=length,w=width). The leaves were measured and counted above a
given surface, chosen approximately to be the field of view of the
spectroradiometer. LAI was calculated as the ratio of the total leaf area
to the ground surface. This configuration of measurements allowed
reflectance measurements with highly variable LAI, LMA and CHL,
with most of the changes, however, co-occurring. The measurements
are reported in Table 4.

B.2. Spatial measurements

Another experiment was done during one clear day in June 2003.
When the sun was close to its zenith (local noon), four different
measurements were done in four locations of the small canopy.
The protocol for LAI, LMA, and CHL determination was the same as
above.

B.3. Potted tree spacing

The third protocol was devised to artificially change the LAI using
potted trees that were planted concurrently with the small canopy.
These black pots were placed on a surface covered with the same
mould as the small canopy. The first reflectance measurement was
madewith the four pots that were stuck together, as the leaves of each
tree were entangled. The pots were thenmoved away from each other,
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and newmeasurements were made. This was repeated nine times, the
last measurement being made without any leaves in the field of view.
All measurements were done in a one-hour time frame on the same
day in June 2003with a clear sky and the sun at local noon.We assume
that small sun angle changes occurring during this period did not
strongly affect the reflectance signal with a nadir observation.
Between two consecutive measurements, tree density decreased,
therewere fewer leaves present in the field of view, and LAI decreased.
CHL and LMA, however, did not change. LAI, CHL and LMA
measurements were made with the same methodology as that used
for the small canopy, except that leaves could be sampled at the end of
the experiment on leaves that were inside the field of view.

B.4. Defoliation

Finally, a total defoliation of a part of the small canopy was
performed during one week in June 2004. Reflectance of this
surface was measured at the same solar time (local noon), with
the spectroradiometer at 1.5 m, because trees were of one meter
height in 2004. Between two reflectance measurements, 240
leaves were randomly taken from the canopy within a delimited
zone that included the surface seen by the sensor. To make sure
that leaves were randomly selected, the vertical dimension was
divided into top, middle and bottom layers, and one third of the
240 leaves were taken from each layer. Twenty-six reflectance
measurements were made before the canopy was totally defo-
liated. All leaves were kept cold before their surface measurement
with a planimeter for the LAI calculation. The initial LAI was
calculated when all the leaves were taken and measured, and
intermediate LAI was calculated by difference. The leaves were
oven dried and weighted to obtain their mean LMA. CHL was
obtained from SPAD measurements.

Appendix C. Fontainebleau and Fougères forests: LAI, LMA and
CHL measurements

The same measurement protocols were used in Fontainebleau and
Fougères. Five to 15 representative trees were selected within each
stand: five trees in Fontainebleau stands or 10 in case of mixed stands
(five trees per species), 10 trees in Hesse or 15 in case of mixed stands
(10 beech trees and five oak trees). For each selected tree, one branch
of the upper canopy exposed to sunlight was shot. 3⁎10 leaves were
randomly selected and placed into three different bags, with one of
them chosen for chlorophyll content measurements. For each of the
ten leaves of that bag, 6 to 15 SPADmeasurements spaced by 1 to 2 cm
weremade all over the leaf. The average SPAD value was calculated for
each leaf. The average SPAD value per leaf was then used to obtain leaf
chlorophyll (in µg cm−2) with the same equation used in the small
canopy method (Appendix B). The average of the 10 chlorophyll
estimations gives the tree chlorophyll estimate and the average of tree
estimates gives the stand CHL estimate.

The three bags per tree, each containing ten leaves, were used for
LMA estimation. The cumulative surface of the ten leaves was
measured with an area meter (LI-3000A Area Meters, LI-COR Inc.,
Nebraska), and then leaves were oven-dried for two days at 60–65 °C
before being weighted. The LMA is the ratio of the leaf surface to dry
weight (g m−2). The three values per tree were averaged to get the tree
LMA estimate, and the average of tree estimates is the stand LMA
estimate.

The LAI-2000 was used for ground LAI measurements. A detailed
description of this instrument is given by Cutini et al. (1998).
Calculations were carried out using three rings, which give an
approximate value for the integration surface covered by the LAI-
2000 of 300 m2, depending on tree height. A detailed description
and analysis of the LAI measurement method is given by Dufrêne
and Bréda (1995), Le Dantec et al. (2000), and Soudani et al. (2006).
For each stand, and according to its size, 40 to 150 LAI-2000
measurements were taken at intervals of 8±2 m on several transects.
For the Fougères site, the LAI measurements were made in 28 of the
33 stands.

Appendix D. Hyperion image processing

Bad pixel removal: Bad pixels are already flagged in the L1R during
the USGS processing. However, we performed an additional search for
bad pixelswith theHan et al. (2002)methodology. Negative pixel values
were replaced by null values. Pixels in a given column for which values
were inferior to their left and right adjacent pixels weremarked. Ifmore
thanhalf of thepixels of a columnweremarked, and if therewere at least
15 contiguous marked pixels in a column, then the column was
corrected, i.e. replaced by the mean of the adjacent columns.

Destriping: For some bands, there were stripes, generally at the left
and right part of the image. The destriping methodology used is a new
and efficient one, that is improved from the “global method” described
by Datt et al. (2003). The global method calculates a gain gi and an
offset oi for the ith column of the image for a given band, with the
following equations:

gi ¼
s
si

oi ¼ m − gi �mi

where m and s are the mean and standard deviation of the entire
image (for the considered band) and mi and si are those of the
considered column.

Finally, the pixel xij (ith column, jth row) is corrected with:

xijcorrected ¼ xij � gi þ oi:

This means that the mean and standard deviation of each column
after correction are equal to those of the entire image. As noted by Datt
et al. (2003), this leads to high incoherencies in images taken for
landscapes that are spatially heterogeneous in reflectance like
Fontainebleau and Fougères, and that are not equally distributed in
the horizontal axis. For instance, a large sandpit (high reflectance) is
located in the south-east of the Fontainebleau forest, resulting in si
and mi that are very different from other columns.

The new methodology is based on a modified “local method” that
uses non-striped bands spectrally close to the ones subject to
correction. A linear equation is obtained by comparing the pixel
values of these two bands (only pixels of the column 88 to 168 are
used because they have fewer stripes). The non-striped image is then
transformed to a new image I with this equation. The equations are
the same as for the global method, except that m and s values are
replaced by mIi and sIi, the mean and standard deviation of the
transformed image I for the column i. Fig. A2 shows the mean and
standard deviation of the column of band 8 before and after
destriping. The column standard deviation does not change much
after image destriping.

Smile effect: This step aims to correct the signal for cross-track
spectral errors (smile/frown). Hyperion's two dimensional detector
arrays show a frown effect of 2.6 nm to 3.6 nm and .40 nm to .97 nm in
the VNIR and SWIR, respectively. A linear interpolation resampling
scheme has been applied to the data using the spectral calibration file
provided with the level 1R data to remove this effect. The smile effect
may have changed with time since launch (Khurshid et al., 2006), but
this change may only have a small effect on the result obtained in this
study.

Atmospheric corrections: This step aims to correct the signal for the
atmospheric absorption and scattering mainly due to water vapor and
aerosols. This was done with the FLAASH (Fast Line-of-sight Atmo-
spheric Analysis of Spectral Hypercubes) software incorporated in
ENVI based on the MODTRAN (MODerate resolution atmospheric



Fig. A2. Mean and standard deviation DN for band 8 (per column) of Fontainebleau Hyperion image for original image, and destriped image with the global method or the method
used for this study.

3863G. le Maire et al. / Remote Sensing of Environment 112 (2008) 3846–3864
TRANsmission) model. For the Fontainebleau forest, the water vapor
content and the optical depth of aerosols were prescribed at their
values measured on the day of acquisition with a Cimel (CE 318N,
Cimel Electronique, France) sunphotometer placed in the centre of the
forest, and part of the AERONET (AErosol RObotic NETwork) global
network. For the Fougères forest, the water and aerosol retrieval of
FLAASHwere used. These options have shown successful results when
applied in Fontainebleau. The aerosol model for Fontainebleau is
urban due to the proximity of Paris, whereas for Fougères the aerosol
model is rural.

Georeferencing and rectification: This was done using about 20
ground control points from 1:25,000 maps and GPS ground measure-
ments at distinct points inside or around the forest. The landscape is
mainly flat in Fontainebleau and Fougères, so that rectification with a
second order polynomial is sufficient to reduce error below 15 m.
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