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Leaf area index (LAI) is a key parameter of atmosphere–vegetation exchanges,

affecting the net ecosystem exchange and the productivity. At regional or

continental scales, LAI can be estimated by remotely-sensed spectral vegetation

indices (SVI). Nevertheless, relationships between LAI and SVI show saturation

for LAI values greater than 3–5. This is one of the principal limitations of remote

sensing of LAI in forest canopies. In this article, a new approach is developed to

determine LAI from the spatial variability of radiometric data. To test this

method, in situ measurements for LAI of 40 stands, with three dominant species

(European beech, oak and Scots pine) were available over 5 years in the

Fontainebleau forest near Paris. If all years and all species are pooled, a good

linear relationship without saturation is founded between average stand LAI

measurements and a model combining the logarithm of the standard deviation

and the skewness of the normalized difference vegetation index (NDVI)

(R250.73 rmse51.08). We demonstrate that this relation can be slightly

improved by using different linear models for each year and each species

(R250.82 rmse50.86), but the standard deviation is less sensitive to the species

and the year effects than the mean NDVI and is therefore a performing index.

1. Introduction

The leaf area index (LAI), defined as one half of the total surface of leaves by unit

ground surface area, corresponds to the main surface exchange of carbon and water

between the forest canopy and the atmosphere. Biophysical characteristics of the

forest stand such as LAI, gap size and distribution show a strong spatial variability

from stand to regional scales. Some optical (LI-COR LAI-2000, hemispherical

photographs, Sunscan, Demon) and direct or semi-direct methods (litter collection

and allometric methods) exist for LAI estimation at stand level (Albrekston 1984,

Dufrêne and Bréda 1995). The estimation of LAI variability at regional and global

scales is essential but not feasible using in situ methods such as those described

above. For these reasons, remote sensing of LAI is the subject of numerous works

due to the growing demand of this parameter for ecological modelling (Justice et al.

1998, Lucas and Curran 1999, Running et al. 1999).
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The approaches used, generally based on Bidirectional Reflectance Distribution

Function (BRDF) model inversion procedures or on empirical relationships,

illustrate the difficulties with LAI remote sensing due to the complexity of the

radiometric behaviour of forest canopies (Peterson et al. 1987, Asner 1998). Several

factors such as 3-dimensional canopy structure heterogeneity, shrubs and herbaceous

species of the understorey, plus exogenous factors such as atmospheric effects, solar

illumination and view geometry conditions strongly affect the spectral properties

of the canopy (Myneni and Asrar 1994, Gastellu-Etchegorry et al. 1999). These

factors make interpretation difficult, particularly for multi-temporal remote sensing

images.

LAI–radiometric data relationships are very scattered (Turner et al. 1999,

Colombo et al. 2003) and show a well known plateau termed saturation at which the

increase of LAI has no effect, neither on single nor combined spectral bands (Tian

et al. 2000). The level of saturation is variable and species-dependent (Chen et al.

2002) but generally reached for mid-LAI values around 3–5 (Turner et al. 1999). An

LAI value greater than 5 is frequent and one-third of the terrestrial land surface is

occupied by such forests (Turner et al. 1999). Moreover, local measurements may

lead to LAI values less than 1 and greater than 10 in the same plot. Thus, forest LAI

variability could not be estimated by LAI versus radiometric data relationships with

saturation plateau.

In this paper, to overcome the saturation problem, we try to estimate stand LAI

using not only averaged radiometric data but also their variability over the stand.

First, we thought that the LAI distribution could bring additional valuable

information linked to the LAI itself. Second, and somewhat paradoxically, the

saturation of the normalized difference vegetation index (NDVI)–LAI relationship

provides in theory a way to estimate the LAI: the higher the LAI, the larger the

number of saturating pixels, and the smaller the variability of NDVI. Third, an

increase in stand LAI implies a decrease in canopy openness and a lower con-

tribution of the soil reflectance to the whole canopy reflectance; this may cause a

decrease in the spatial variability of reflectance. For these reasons we have studied

the shape of the NDVI distribution (i.e. first-order texture) to see if an improvement

in LAI estimation from remote sensing images was possible.

2. Materials and methods

2.1 Site description

Measurements were taken in the Fontainebleau forest, located south-east of Paris,

France (48u259 N, 2u409 E). This large mixed deciduous forest extends over 17 000 ha

at an average elevation of 120 m. Climate is temperate with an average annual

temperature of 10.2uC and an average annual precipitation of 720 mm.

The dominant species are oaks (Quercus petraea (Matus) Liebl., Quercus robur

(Matus) Liebl.), beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.). The

main understorey species are hornbeam (Carpinus betulus L.) and beech. The

herbaceous understorey species are mainly bramble (Rubus fruticosus L.), bracken

(Pteridium aquilinum (L.) Kuhn) and purple moor-grass (Molinia caerulea (L.)). The

Fontainebleau forest is dominated by oaks, which represent 50%, beech 10% and

Scot pines 40%.

Most of the deciduous stands are located on flat ground (i.e. on windborne

sands), while the coniferous stands are found on the hilly parts of the forest (i.e. on
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the sandy Stampian or the sand-stone, with a shallow soil). Almost all of the humus

types are found in the Fontainebleau forest from mull to mor.

All stands are managed by the French forest service, Office National des Forêts.

Regular thinning and other forestry practices are carried out and appear to be the

main factors of spatial and annual variations of LAI and other canopy structure

characteristics (Le Dantec et al. 2000).

2.2 LAI measurements

Leaf area index measurements were made using a ground-based optical instrument,

the Plant Canopy Analyser LAI-2000 (LI-COR Inc., Lincoln, NE, USA), named

LAI-2000 hereafter. This instrument uses a fisheye optical sensor, comprising five

detectors arranged in concentric rings, to measure diffuse radiation (below 490 nm)

from different sections of the sky. The ratio of below-canopy and above-canopy

radiation, measured for the five zenith angles, corresponds to the transmittance or

the gap frequency. Estimation of LAI is based on the inversion of the standard

Poisson model of gap frequency distribution (Nilson 1971).

LAI-2000 measurements were taken from the end of June to the middle of July

during clear sky days to avoid rapid changes in sky conditions. All measurements

were made during periods of very low solar elevation: less than 2 hours after sunrise

or before sunset (Le Dantec et al. 2000). To prevent direct radiation on the sensor,

measurements were made in the opposite direction of the sun, using a view restrictor

of 180u. Above-canopy incident diffuse radiation measurements have been taken in

open areas without edge effects close to the stands studied. For a better agreement

with direct measurements, the three upper rings of LAI-2000 are used to estimate

LAI (Welles and Norman 1991, Dufrêne and Bréda 1995, Olthof and King 2000).

For each stand and according to its size, 40–150 measurements (71 on average)

were taken from several transects at distance intervals ranging from 5 to 10 m. The

mean LAI over the stand is therefore calculated and hereafter named simply LAI.

From these local measurements, it is also possible to have the within-stand

distribution of LAI measured in situ.

The measurements were made within 40 stands (12 are dominated by beech, 17 by

oak and 11 by Scots pine) and over 5 years (1994–1998). Selection criteria based on

stand age, tree density and biomass are considered and this sample is representative

of the main types of the Fontainebleau forest stands (Le Dantec et al. 2000). Note

that LAI is not measured every year for all stands. For that reason, we have only

162 plots at our command (and not 200). The number of stands used in this study

and the dominated species are summarized in table 1.

2.3 Remote sensing stand data acquisition and processing

Five Satellite pow l’Observation de la Terre (SPOT) High Resolution Visible (HRV)

images, taken between June and August, from 1994 to 1998 were used. They had a

20 m pixel size and we used the red (XS1 610–680 nm), green (XS2 500–590 nm) and

near-infrared (XS3 790–890 nm) bands. Images were rectified and geo-referenced

using ground control points and integrated in a GIS database of the Fontainebleau

forest. Digital counts (grey tone) were converted to at-satellite (top of atmosphere

(TOA)) radiance (Wm22 sr21 mm21) using the gains and offsets contained in the

image headers. The images were then calibrated to scaled surface reflectance after
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Table 1. Statistical summary of leaf area index and NDVI per species and per year.

Scots pine dominated-stands Oaks dominated-stands Beech dominated-stands

Year 1994 1995 1996 1997 1998 1994 1995 1996 1997 1998 1994 1995 1996 1997 1998
Number of stands 3 9 10 5 10 14 18 18 8 16 8 11 11 10 11
LAI 2.30 2.31 2.89 2.67 2.61 4.66 4.62 4.96 5.51 5.27 5.52 5.00 5.39 4.82 5.34
stdLAI 0.98 0.75 0.99 0.60 0.80 1.03 1.13 1.15 1.17 1.17 1.04 1.09 1.28 1.15 1.39
NDVI 0.792 0.762 0.779 0.701 0.673 0.881 0.862 0.873 0.828 0.812 0.908 0.875 0.898 0.812 0.838
stdNDVI 0.021 0.023 0.023 0.030 0.038 0.018 0.016 0.022 0.016 0.021 0.011 0.011 0.014 0.016 0.014
skewNDVI 20.319 20.059 20.207 0.340 0.118 20.618 20.616 20.881 20.086 20.649 21.158 20.676 21.651 20.319 20.682
kurtNDVI 0.536 0.493 0.819 0.943 20.160 1.575 1.738 2.979 0.381 1.590 3.393 1.521 7.064 0.233 2.361
R1 0.99 0.74 0.69 0.17ns 0.88 0.87 0.84 0.96 20.49ns 0.96 0.90 0.89 0.81 0.09ns 0.93
R2 20.92ns 20.65 20.52ns 0.11ns 20.72 20.92 20.94 20.90 20.81 20.94 20.84 20.96 20.60 20.41ns 20.68

std, average within-stand standard deviation. R1, the correlation coefficient between mean NDVI and LAI. R2, the correlation coefficient between logarithm
of standard deviation of NDVI and LAI. Statistical analysis: ns, not significant (p.0.05).
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atmospheric corrections using a dark object subtraction (DOS) approach (Song et al.

2001).

Using ENVI software (Environment of Visualizing Images, Research System Inc.,

Boulder, CO), limits of each stand and for each year were located and vectorized

taking special care not to include pixels situated on the borders. Geographic limits

and measurements taken within each stand are well documented and the high

resolution of SPOT images shows sufficient details to allow for their accurate

positioning. Geolocation errors of the stands are thus inferior to one pixel (20 m).

For each stand and in each band, all grey tone pixels were extracted, corrected for

atmospheric effects and processed using SAS software (SAS Institute Inc., Cary,

NC).

2.4 Methodology and statistical analysis

Among different radiometric indices, we have tested NDVI and simple ratio (SR),

which are the most widely used indices. Several studies showed high correlations of

these indices to canopy cover (Chen and Cihlar 1996), LAI (Fassnacht et al. 1997),

above-ground biomass (Dong et al. 2003) and other environmental variables. Note

that the idea of our study is to demonstrate that the distribution of spectral

vegetation indices can be used not to search for the best indices. The SR index has

given less accurate results for predicting LAI and is therefore not presented in this

paper.

A multiple least square linear regression analysis with LAI as the dependent

variable and meanNDVI, stdNDVI (or logarithm of stdNDVI), skewNDVI, kurtNDVI as

the explicative variables, were then computed. Only explicative variables, which

contribute significantly to the linear regression model, were retained. The first

objective is to find predictive relationships as general as possible (by incorporating

all the data). Then we attempt to analyse if the year and species effects can explain

residuals of the general model, and how much the accuracy of the model increases if

these two effects are taken into account.

The experimental design of the statistical analysis is described in figure 1:

Figure 1. Experimental design of the different models tested to relate NDVI distribution
and measured LAI according to the year or the species.
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(i) A first linear regression model, including all species and all years (n5162),

was computed. The residuals, which represent the unexplained variance, were

investigated by means of a two-way analysis of variance to test the year and

species effects.

(ii) Five linear regression models, one for each year without distinction between

the three species, were computed to improve the estimation of in situ LAI and

to isolate the year effect.

(iii) Fifteen linear regression models, one for each species and for each year, were

computed to obtain the most accurate predictions of in situ LAI and to

evaluate the year and species combined effects.

The species effect on the LAI measurements was tested by an analysis of variance

over all the stands and for the 5 years. Since LAI measurements were not made on

all the stands each year, the year effect is only tested over 15 stands (7 dominated by

oak, 7 by beech, 1 by Scots pine), where LAI was measured each year. The species

and the year effects on the NDVI are tested with the same methodology as for the in

situ LAI measurements. Therefore, all the plots are used for the analysis of species

effect and only 15 stands for the year effect.

To estimate the NDVI variability in each stand, we used the standard deviation

(stdNDVI), the skewness (skewNDVI), which quantifies the degree of asymmetry of a

given distribution and the kurtosis (kurtNDVI). If a symmetrical distribution is

considered to have a centre, two shoulders, and two tails, kurtosis describes the

proportions found in the centre and in the tails in relation to those in the shoulders

(Sokal and Rohlf 1995). The symmetry of the LAI distribution is examined because

the LAI distribution is not symmetrical and the NDVI–LAI relationship is not

linear. Skewness and kurtosis were therefore expected to be pertinent parameters,

which could bring additional information linked to the LAI itself. The LAI

measurements were not spatially explicit (they were measured on several randomly

distributed transects). Therefore it would have been very difficult to explain and

interpret an empirical relationship between LAI and the second-order statistical

measures of image texture (Haralick et al. 1973). For that reason, the second-order

statistical measures of image texture are not examined.

The relationships between in situ LAI and the mean NDVI (meanNDVI) and

descriptive statistics of NDVI dispersion were first analysed on the basis of the

Pearson correlation coefficients to highlight the potential correlations.

Concerning the analysis of variance, the level of significance was calculated by

analysis of variance (ANOVA) followed by a Bonferroni test for multiple

comparisons. The bonferroni test allows the significance of the difference between

all pairs of means (pairwise comparison of means) to be tested, while ANOVA tests

the significance of the global effect. For all the tests, a probability level at p(0.05

was considered to be significant. The normality of model residuals is tested by the

Shapiro–Wilk W test (Shapiro et al. 1968). All statistical analyses were performed

using SAS software.

The predictive ability and the stability of the three models were also assessed by

means of a cross-validation procedure. Cross-validation is a technique to estimate

the forecast skill of a statistical forecasting model (Michaelsen 1987). Each member

of a given dataset is excluded in turn from the prediction algorithm process and then

predicted using the algorithm or fit or relationship derived without it. This is done

for each member (i.e. the prediction algorithm is computed n times, if n is the size of

the dataset). This avoids separating the dataset into a calibration and test dataset,
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and allows testing the predictive ability of the algorithm on each member of the

dataset. The procedure was repeated n times and the Pearson correlation coefficients

and the root mean square error (rmse) were calculated between the predicted and the

observed values to assess the accuracy of the model. The stability was evaluated by

the coefficient of variation (CV) of the different coefficients associated to the

regression variables.

3. Results

3.1 In situ LAI and remote sensing characteristics of stands

3.1.1 In situ LAI of stands. The statistical summary of NDVI and LAI is given in

table 1.

Concerning all the stands, the mean in situ LAI over the five years is 4.49 and the

standard deviation is 2.07 (4.95¡2.21 for oak, 5.25¡1.57 for beech and 2.60¡1.00

for Scots pine).

The temporal variation of LAI over the five years is estimated by the mean value

of only 15 stands, where LAI was measured each year (figure 2). The differences

between years are not significant (ANOVA p50.59). The slight decrease of the mean

LAI in 1997 may be due to the effect of drought in 1996 (Le Dantec et al. 2000).

3.1.2 Radiometric characteristics of stands. For the NDVI and for all the stands,

the descriptive statistics of the radiometric data are presented in table 1. Differences

are significant between species (p,0.05) for the mean, the standard deviation and

the skewness, but not significant for kurtosis.

The year effect on the radiometric parameters on the 15 stands, where LAI was

measured all the years, has been tested (figure 3). The same sample used for the in situ

LAI analysis was considered, to allow a comparison with the LAI results. We note

that there is a significant decrease in the mean NDVI in 1997 and 1998 compared to

1994, 1995 and 1996 and a significant increase in the standard deviation in 1997 and

1998 compared to 1994 and 1995. On the other hand, there is no effect of the year on

kurtosis and for the skewness of the NDVI only 1996 differs significantly from 1997.

Figure 2. Evolution of the mean in situ leaf area index (LAI) for 15 stands (error bars show
LAI standard deviation).
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3.2 Relationships between in situ LAI and radiometric data

The relationship between in situ LAI and the radiometric data is tested over the 5

years and for all the 162 sampled stands on which LAI was measured. Significant
correlations between the LAI and single bands, near-infrared (NIR) and visible

(VIS), were found. These correlations are consistent with the expectations based on

previous works (Spanner et al. 1990): LAI is positively correlated to the NIR band

(r50.71, p,0.0001) and negatively correlated to the red (r520.52, p,0.0001) and

green bands (r520.5, p,0.0001). Significant inverse curvilinear relationships are

also found between LAI and the standard deviation of radiometric data in the VIS

band but not in the NIR band. Correlation coefficients are 20.75 (p,0.0001) in the

green band and 20.65 (p,0.0001) in the red band. Saturation occurs at LAI,2.5
for the relationship between LAI and red or green SPOT bands, while no saturation

is observed for the NIR band. Nevertheless, all these relationships are very scattered.

Figure 4(a) shows a significant relationship (p,0.0001) between LAI and NDVI

in agreement with other studies. Over all years and all species, the correlation

coefficient between in situ LAI and meanNDVI is 0.70. This relation is very scattered,

particularly for low LAI values, year and species-dependent, and shows saturation

when in situ LAI is greater than ,4.

Between in situ LAI and the standard deviation of the NDVI (stdNDVI), the
correlation coefficient is 20.77 (p,0.0001), and there is a strong logarithmic

relationship (r520.83, p,0.0001) between these two variables (figure 4(b), (c)).

The correlation coefficients between meanNDVI and LAI or between the logarithm

of stdNDVI and LAI are also calculated by year and by species (table 1). In both

cases, the correlation coefficients are higher for the oak stands than for the beech

stands and higher for the beech stands than for the pine stands. By distinguishing

between species and year, we note that meanNDVI is as correlated with LAI as the

logarithm stdNDVI, while it is less correlated when all the years and species are
pooled. This indicates a smaller effect of species and year on correlation based on

stdNDVI than on those based on meanNDVI.

Figure 3. Evolution of mean NDVI (meanNDVI) and standard deviation of NDVI (stdNDVI)
for 15 stands (error bars show standard deviation).
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3.3 Empirical model

3.3.1 Model 1: Generic model (all species, all years). Only the intercept of the

relationship, the logarithm of stdNDVI and the skewNDVI contribute significantly to

the regression model (table 2). The other explicative variables (meanNDVI or

kurtNDVI) are therefore not used to compute the model. The cross-validation

correlation coefficient between measured and predicted values is 0.85 (R250.73),

and the root mean square error (rmse) is 1.08 (figure 5(a)).

Figure 4. Relationship between mean LAI measured in situ and (a) mean NDVI, (b)
standard deviation of NDVI, (c) logarithm of the standard deviation of NDVI. Results are
presented by year from 1994 to 1998.

Table 2. Parameters of regression model 1 (generic model).

Variable Intercept log(stdNDVI) skewNDVI

Parameter estimate 26.825 22.685 20.484
Standard error 0.597 0.146 0.095
p.|t| ,0.0001 ,0.0001 ,0.0001
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Figure 5. Relationships between in situ LAI and LAI predicted by linear regression: for
generic model (a), for model year dependent (b), for model year- and species-dependent (c).
Results are presented by year (left) or by species (right).
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By distinguishing results between different species and years, we note that there is

a year effect. Indeed in 1997 and 1998, predicted LAI is slightly lower. By a two-way

ANOVA, we conclude that the effects of year (p,0.0001) and species (p,0.0072) on

residuals are significant, nevertheless there is no significant interaction effect

(p,0.599). As there is a significant year effect on NDVI and not on LAI, a year

effect on the generic model was predictable.

This empirical model can therefore be improved by distinguishing between

different years or between different species.

To validate this model, a cross-validation was carried out. The correlation

coefficient between predicted and measured values is 0.85 and the rmse is 1.13. The

stability of the model is estimated by the coefficient of variation of the regression

parameters (see table 3). For the three variables the coefficient of variation is very

low (,2%) and the regression model is quite stable.

3.3.2 Model 2: Model year dependence. In this case, there are five models, one per

year from 1994 to 1998. Only the intercept of the relationship and the logarithm of

stdNDVI significantly contribute to the regression model. The correlation coefficient

between measured and predicted values is 0.88 and the root mean square error

(rmse) is 0.98 (figure 5(b)).

By a two-way ANOVA, we conclude that the species-effect on residuals remains

significant (p,0.0016). The species-effect is not only a cover type effect (between

resinous and deciduous species): the residuals also differ significantly between beech

and oak (Bonferoni test p,0.05).

The correlation coefficient of the cross-validation for the model year dependent is

0.86 and the rmse is 1.09. The coefficient of variation of parameters for each model

is lower than 3% except in 1997 (table 3). The fitted parameters significantly differ

according to the year (p,0.05), which confirms the year effect.

3.3.3 Model 3: Model year- and species-dependence. In this case, there are 15

models, one per year and per species. Due to the small size of samples, we kept only

the logarithm of stdNDVI as an explicative variable. Each model is used

independently to predict LAI. The correlation coefficient between measured and

predicted values is 0.91, and the rmse is 0.86 (figure 5(c)).

Scots pine stands are removed from cross-validation analyses for the years 1994

and 1997, because there is not enough data (3 and 5 stands, respectively, see table 1).

The correlation coefficient of the cross-validation is 0.74 and rmse is 2.10. The

coefficient of variation of fitted parameters for each model might be very high: e.g.

Table 3. Coefficient of variation (%) of coefficients associated to the explicative variables in
models 1 and 2 in the cross-validation.

Model 1 Intercept log(stdNDVI) skewNDVI

0.58 1.84 0.36

Model 2 Intercept log(stdNDVI)

1994 2.96 1.97
1995 1.67 1.18
1996 1.90 1.18
1997 28.70 10.24
1998 2.94 1.92
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higher than 400% for beech in 1996 and oaks in 1997. Even if the two models

associated to these higher values are removed, the mean variation coefficient

remains high: 8% for parameters associated with the logarithm of stdNDVI and 16%

for parameters associated with intercept. The regression models are thus quite

unstable because of the small size of samples used (see table 1). These regression

models are therefore unlikely to be useful for estimating LAI.

4. Discussion

4.1 Causes of the relationship between average stand LAI and within-stand
variability of radiometric data

Our results show that the main radiometric variable correlated to in situ LAI is the

logarithm of stdNDVI. This negative correlation indicates that at the stand level, the

stand average LAI is inversely related to the variability of NDVI. This negative

correlation can be attributed to several factors.

First, due to the saturation of the relationship between NDVI and LAI, similar

spatial variation of LAI leads to much higher spatial variability of NDVI for low

average stand LAI values than for higher values. In other words, the higher the LAI,

the larger the number of saturating pixels and the smaller the variability of NDVI.

To illustrate this, we compare histograms of the distribution of in situ LAI and

NDVI for two oak stands (C3 and C21) having two different average LAI values but

similar standard deviations of LAI (figure 6(a)). The stand C3 is dense with an

average LAI of 6.3. The LAI values within this stand range between 3.5 and 8.5,

which reflect the absence of large gaps. The stand C21 is more open with gaps

sufficiently large to have LAI values close to zero and an average stand LAI is 1.61.

The statistical distribution of LAI of this stand is clearly asymmetrical and

positively skewed with the mode smaller than the mean.

Consequently, for a mean LAI of 6.3, as in C3, NDVI varies little (figure 6(d)).

Oppositely, for a mean LAI of 1.61, the NDVI does not saturate and as a

consequence NDVI distribution is wider (figure 6(c)). This phenomena can partly

explain the relationship found between LAI and log(stdNDVI). As the relationship

between LAI and NDVI saturates, the relationship between LAI and stdNDVI also

saturates, but for higher LAI than in the case of the LAI–NDVI relationship.

Indeed, even for high stand mean LAI (6 or 7), there is an area inside the stand,

where local LAI is lower and not in the saturation range.

Analysis of statistical distribution of within-stand local LAI show that these

distributions are variable as shown for the stands C3 and C21 (figure 6(e)). We found

that these distributions can be fitted to the Weibull probability density function with

different parameters depending on average stand LAI (data not shown). Knowing a

stand LAI, we can thus reproduce theoretically its distribution. Then using an

observed relationship between LAI and NDVI, we can generate several theoretical

NDVI distributions and theoretically find if there is a relationship between LAI and

stdNDVI. In figure 6(c), we show the simulations of several distributions of LAI and

NDVI for different mean LAI. As intuitively expected we find that the distribution

of NDVI becomes more compact (i.e stdNDVI is smaller) the higher the LAI.

Note that other factors could have an effect on NDVI distribution. Among them

the roughness of the top of the canopy determines the spatial distribution of shaded

and sunlit vegetation and the soil can also contribute to the whole canopy

reflectance variability. The real contribution of these factors is difficult to evaluate

896 H. Davi et al.



because of the complex relationship between LAI, the roughness of the top of the

canopy, the soil reflectance and the radiation/vegetation interactions.

Even when year and species effects are taken into account, the variation of the

relationship between LAI and NDVI spatial variability remains strong (figure 5(c)).
The residual variations are difficult to reduce. Indeed, for the same LAI many

configurations of the canopy structure are possible. For example, the roughness of

Figure 6. Histograms of LAI values on two contrasted stands (a) C21 LAI51.61 + /21.00
and (b) C3 LAI56.29 + /20.94 in 1995. (b) Historgrams of NDVI values on (c) C21 and (d ) C3.
(e) Sixteen modelled distributions of LAI computed for 44 LAI classes. LAI distributions are
estimated from the Weibull function of meanLAI. (f ) Sixteen modelled distributions of NDVI
distributions are calculated by assuming a simple logarithmic relationship between LAI and
NDVI.
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the top of the canopy or the stratification, can strongly affect the reflectance in the

visible and infrared bands and the NDVI (Leblanc et al. 1997). These architectural

differences in canopy structure are among the main factors explaining the variation

in LAI–NDVI relationships (Chen et al. 1999). Furthermore, there may be a

residual effect of the understorey on the reflectance, which may vary across the years

and with the dominant species.

4.2 Dependency of the regression results on stand selections

Obviously, an estimation of LAI from the NDVI variability requires a judicious

selection of the area over which the reflectance variability is estimated. Here stands

were set out by photointerpretation and stands are ‘relatively’ homogeneous in

species composition, age and forestry practices. This method requires therefore a

preliminary work in order to classify the areas.

Moreover, the notion of homogeneity is scale dependent. Accurate definition of

this notion is given in Raffy et al. (2003). The radiometric homogeneity depends on

the spatial resolution of the image and on the different scales of variation in canopy

structure. The spatial variability of radiometric data decreases when the image

spatial resolution becomes coarser. For these reasons, the obtained relationships

certainly depend on satellite spatial resolution and stand size. There is probably an

optimum resolution for which the correlation may be improved (Marceau et al.

1994). Despite the fact that significant correlations were found, more investigations

are needed to enhance our understanding of the dependency between the image

spatial resolution and the forest canopy structure for the purposes of LAI

estimation.

The model stability also requires enough samples, as shown by the variability of

regression parameters during the cross-validation in our species and year dependent

models. In future works, the model stability should always be tested, if one wants to

use this method to estimate LAI at a regional scale. In our case, a good compromise

would be to pool the stands dominated by deciduous species and to increase the

number of stands dominated by Scots pine.

It is obviously necessary to test and validate this methodology on other sites. In

each case, before calculation of NDVI variability and application of this method for

LAI determination, preliminary work is necessary to define the homogenous stands.

This task is relatively easy in forest regions, where inventory tables and thematic

maps are available and easy to use via GIS systems. On the contrary, photo-

interpretation, image classification and segmentation techniques may be used to

partition the images taken by airborne and satellite sensors into homogenous

regions (Welch et al. 2002, Burnett and Blaschke 2003).

4.3 Improving the generality of regression models over the years

We found that there is a year effect on the relationships between LAI and the NDVI

variability. This effect limits the generality of the model. It is probably due to an

effect of image acquisition date. In 1997 and 1998, satellite measurements were

taken late in August while in 1994, 1995 and 1996 they were taken in July. The

stdNDVI and the meanNDVI measured in 1997 and 1998 significantly differ from

those measured in 1994, 1995 and 1996 (p50.0019 and p50.0001, respectively).

Moreover, over the 15 test stands, a good correlation was found between the mean

of stdNDVI and the date of reflectance measurements (figure 7).

898 H. Davi et al.



Different authors have also measured temporal variation of mean reflectances
during the leafy season: between July and August for Japanese beech, Kodani et al.

(2002) found a decrease of near-infrared reflectance, while the NDVI remained

stable; for European beech, Blackburn and Milton (1995) found a slow increase in

red reflectance and a decrease in near-infrared reflectance. Thus, these date effects

probably depend on a complex relationship between sun elevation, atmospheric

conditions, biochemical composition (increase in chlorophyll content in Kodani

et al. (2002)), canopy structure, soil reflectance and understorey variations.

Finally, several improvements could potentially enhance the accuracy of our

results:

1. We can improve the standardization of radiometric data acquisitions

(accurate corrections for the effects of atmospheric and satellite-sun geometry

conditions). Nevertheless, we have carried out the same work without

atmospheric correction and the results are still quite good. Using the standard

deviation, which is based on the differences between local values and the

mean, may indeed reduce the atmospheric effects. So the radiometric
correction essentially highlights the year effect more rigorously.

2. We can also take into account the ground, herb and shrub layers, which affect

the integrated canopy reflectance particularly in sparse forest canopies.

Spectral Mixture Analysis (SMA) offers the possibility to achieve these aims.

Based on the assumptions that the spectrum measured by a sensor is a linear

or non-linear mixture of spectrally distinct endmembers (Roberts et al. 1997),

the SMA/modelling may be relevant to ‘unmix’ these pixels. The spatial and

temporal dynamics of understorey and soil reflectances can be measured in

order to apply a spectral mixture analysis.

3. To improve our understanding of the year effect, it is also necessary to study

the seasonal and spatial patterns of foliar biochemistry and canopy structure
in the Fontainebleau forest, with simultaneous above-canopy reflectance

measurements.

Figure 7. Mean NDVI standard deviation (over the same 15 stands) as a function of date of
reflectance measurements.
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Simulations with BRDF models might also be useful for understanding

interactions between these different factors and the relationship between radiometric

variability and LAI.

5. Summary and conclusions

In this study, we investigated the potential of using the within stand spatial

variability of NDVI to improve the estimation of mean stand LAI. A large database

was available: 162 in situ mean LAI estimations (i.e. 13265 LAI-2000 measurements)

on 40 homogeneous stands across a large region, over 5 years, with three dominant

species (oak, beech, Scots pine). There is a good relationship between measurements

and a linear model combining standard deviation and the skewness of NDVI

(R250.73) valuable for 5 years of data. We showed that this relationship is year and

species dependent. The accuracy of model estimations can therefore be improved by

using different linear models for each year. But the year effect on LAI-stdNDVI

relationship is very slight in comparison with the year effect on LAI-meanNDVI.

Moreover, we showed that this year effect is probably due to an acquisition date

effect, so this ‘year’ effect is in fact a seasonal effect and the relationship is probably

stable from year to year. Finally, it is noteworthy that no saturation occurs in any of

the different statistical models tested, allowing forest LAI estimations with the same

accuracy over the entire range of observations. Even if the year and the species

effects could be further studied, we have shown by cross-validation that the

predictive ability of the generic model is accurate enough (cross-validation

rmse51.13). This methodology may be applied as it is on other forest stands,

where homogeneous stands are mapped or previously delimited by remote sensing.

The causes of the relationship between LAI and NDVI variability will have to be

theoretically further understood to improve the generality of that methodology.
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