

Davi – Predict tree mortality – 2011 EEF Congress – Ávila – Spain

How explain, predict and prevent mortality?

The Mont Ventoux: a mountain in the Mediterranean area

Recent Silver fir decline: two spatial scales

- 2 intensive study sites
- tree transpiration by sapflow measurements
- deep soil water capacity by electric resistivity
- 21 stands gathering 450 trees
- > tree ring record
- > needle loss

Silver at its xeric limit High water stress

Karstic soils with high stone content

- Juvenile growth rate of dead trees is higher
- Tree mortality is not related to needle deficit as growth patterns of dead trees and trees with crown damages differed
- Post effects of drought on transpiration are probably due to fine roots mortality not to hydraulic failure

Cailleret et al., submitted Nourtier et al., submitted Cailleret et al., see a poster here

- > Temporal scale of response (hour, year, decade)
- hydraulic .vs. carbon starvation

CASTANEA: Dufrêne et al., 2005

Drainage

Objectives: Depict the various processes involved in carbon starvation and answer the tree questions revealed by the *in situ* results

Methods:

Add new mechanisms to the modelUse sensitivity analysis

Q1: Impact of juvenile growth and soil conditions on tree vulnerability

- ✓ simulation from 1967 to 2007 (trees: 50->90 years old)
- √ 6 initial dbh: 12->32 cm
- √ 10 Soil Water Capacity: 20 ->140 mm
- √ 3 altitudes: 1000, 1200, 1500m

Model I: Model_{Basis}

Objectives: Depict the various processes involved in carbon starvation and answer the tree questions revealing by the *in situ* results

Methods:

Add new mechanisms in the modelUse sensitivity analysis

Q1: Impact of juvenile growth and soil conditions on tree vulnerability

- ✓ simulation from 1967 to 2007 (trees: 50->90 years old)
- √ 6 initial dbh: 12->32 cm
- √ 10 Soil Water Capacity: 20 ->140 mm
- √ 3 altitudes: 1000, 1200, 1500m

Q2: Role of needle loss or production in provoking or avoiding death

- ✓ same simulation with a second version (Davi et al., 2009)
 - ✓ needle production and mortality depends on reserves

Model II= Model_{LAI var}

Davi et al., 2009

Add needle loss and production = f(C reserves)

Objectives: Depict the various processes involved in carbon starvation and answer the tree questions revealing by the in situ results

Methods:

> Add new mechanisms in the model Use sensitivity analysis

Q1: Impact of juvenile growth and soil conditions on tree vulnerability

- ✓ simulation from 1967 to 2007 (trees: 50->90 years old)
- √ 6 initial dbh: 12->32 cm
- √ 10 Soil Water Capacity: 20 ->140 mm
- √ 3 altitudes: 1000, 1200, 1500m

Q2: Role of needle loss or production in provoking or avoiding death ✓ same simulation with a second version (Davi et al., 2009) ✓ needle production and mortality depends on reserves.

Q3: Impact of roots distribution and dynamics on water uptake and mortality

- ✓ same simulation with a third version (Nourtier et al., in prep)
- ✓ two soil layers: SWC=f(depth of soil, % stone content)
- ✓ impact of fine roots dynamics on water uptake

Model III= Model_{roots}

Add roots mortality f(Ψsoil) and water acquisition f(roots)

Average simulation .vs. Average measure of Ring Width

- Too low average and variability in basis model
- Too high average variability with LAI and roots models

- > High mortality probability when initial dbh and LAI are high
- Mortality rate decreases with altitude (not linearly)

High respiration rate & investment in roots and leaf => low reserves

2. Effect of Leaf Area Index (LAI) plasticity

LAI plasticity => decrease mortality rate

3. Effect of roots dynamics

- Lower mortality at low SWC
- Higher mortality at high SWC
- Mortality differs according the « type » of SWC: % stones change (black triangle) or soil depth change

Carbon starvation does not only sum up to stomata closure and lower carbon uptake

- High juvenile growth provokes high respiratory costs & fine roots production
- Plasticity of needle production limits mortality
- Roots mortality affecting water uptake increases mortality

Back to measurements

- Validation of CASTANEA model on Silver fir flux site in Lavaronne (Italia)
- Impact of pathogens (ongoing PhD)
- Role of hydraulic failure: low in Silver fir (high stomata control), test on another species
- Carbon allocation to fine roots must be better known

Acknowledgement

Main in situ results: 3. Role of deep soil (>2m)

Using tomography (electrical resistivity)

Horizontal scale is 3.01 pixels per unit spacing Vertical exaggeration in model section display = 2.69 First electrode is located at 192.0 m. Last electrode is located at 318.0 m.

Unit Electrode Spacing = 1.00 m.

Healthy were not necessarily located on the « best soils »

Equations of Mortality 1000 random Reserves value from Gaussian law

$$Prob(Mortality) = \frac{\sum Tree(reserves < 0)}{\sum Tree}$$

Soil 2 layers

Transpiration is reduced when the quantity of active root is not sufficient to supply water demand by the crown.

$$T_{(l)} = T.\frac{R_{R(l)} - R_{Rwp}}{R_{Rtop} + R_{Rdepth} - R_{Rwp}}$$

$$g_1 = (g_{1 \text{ max}} - g_{1 \text{ min}}).reduc + g_{1 \text{ min}}$$

$$reduc = \frac{R_R - R_{R wp}}{S_{stress}.(R_{R fc} - R_{R wp})}$$
 $g_1 = \max(g_1.B_{fr}/B_{fr th}; g_{1 min})$

The loss of root is calculated for each layer $(MR_{(l)})$ for the soil water potential $(\psi(l))$ of the same layer.

$$\psi_{(l)} = \psi_{\text{max}} . (R_{R(l)} / R_{Rfc(l)})^{-3.5}$$

During a drought event, the loss of roots by this mechanism is not cumulative. The proportion of root death stops to increase above the maximum rate: 16 % at -2 MPa.

$$MR_{(l)} = 1/e^{0.93.(\psi_{(l)} - \psi_{50})}$$

where ψ_{50} correspond to the soil water potential for which 50 % of the silver fir roots are embolised according to the vulnerability curves established

Main in situ results: 2. Mortality differs from needle loss

1. Effect of Juvenile growth

Ex SWC=60mm

High respiration rate & investment in roots and leaf => low reserves

Main in situ results: 3. Post effects of drought on transpiration

SWC= 40mm

SWC= 30mm: higher photosynthesis with roots dynamics

2. Effect of Leaf Area Index (LAI) plasticity

Evolution of mortality with SWC alt 1000m

SWC= 40 mm dbhinit= 24 cm

LAI plasticity => decrease mortality rate