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Abstract
The adaptation of social-ecological systems such as managed forests depends largely on decisions taken by forest managers who
must choose among a wide range of possible futures to spread risks. We used robust decision theory to guide management
decisions on the translocation of tree populations to compensate for climate change. We calibrated machine learning correlational
models using tree height data collected from five common garden tests in France where Abies alba provenances from 11
European countries are planted. Resulting models were used to simulate tree height in the planting sites under current and
2050 climates (regional concentration pathway scenarios (RCPs) 2.6, 4.5, 6.0 and 8.5). Our results suggest an overall increase
in tree height by 2050, but with large variation among the predictions depending on the provenance and the RCPs. We applied
maximin, maximax and minimax decision rules to address outcomes under five uncertain states of the world represented by the
four RCPs and the present climate (baseline). The maximin rule indicated that for 2050, the best translocation option for
maximising tree height would be the use of provenances from Northwest France into all target zones. Themaximax and minimax
regret rules pointed out the same result for all target zones except for the ‘Les Chauvets’ trial, where the East provenance was
selected. Our results show that decision theory can help management by reducing the number of options if most decision rules
converge. Interestingly, the commonly suggested recommendation of using multiple provenances to mitigate long-term malad-
aptation risks or from ‘pre-adapted’ populations from the south was not supported by our approach.
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Introduction

In complex social-ecological systems (SESs), feedbacks from
management decisions have impacts at different spatial and
temporal scales (Walker et al. 2004). This lag between deci-
sions and feedbacks is particularly critical for forest systems as
decisions taken today can have long-lasting impacts
(Fernández-Manjarrés and Tschanz 2010). Under a stable cli-
mate, managers within SESs can develop rules for using eco-
system services based on their accumulated experience.
However, under changing climates, there is no guarantee that
former rules of use will still work or if ecosystems are able to
adjust by themselves. Managed forests, including those with
planted trees and naturally regenerated populations, typically
concern commercial trees for which seed source regions have
been carefully designed based on the differences among local-
ly adapted populations (Savolainen et al. 2007). In principle, if
the requirements of local adaptation are well understood,
seeds can progressively be planted in new areas to track the
shifting optimum climate. But decisions regarding optimal
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seeds may be more complicated than just following shifting
climates as the genetic adaptive variation is not distributed
evenly across tree populations. Selecting local or exotic seed
sources to compensate for climate change is a typical case of
decision-making in SES that can have positive or negative
impacts. In fact, without human intervention, the ability of
some species to survive in changing climates is heavily reliant
on their specific capacity to adapt locally to new climates
(Aitken et al. 2008; Valladares et al. 2014), which remains
largely unknown for long-lived species like trees. Under such
rapid external perturbations, the integrity of forests systems
clearly depends on the decisions taken by the social compo-
nent of the SES.

Rules for translocating trees under stable climates have
been developed based on precise knowledge of local adapta-
tion of different populations. These levels of local adaptation
to climate have been studied using spatial models that incor-
porate the variation of phenotypic traits measured in prove-
nance tests (i.e. common gardens, defined as transplant exper-
iments for testing the effect of environment and genetics on
tree populations in the case of commercial tree species)
established in different environments (Mátyás 1994;
Savolainen et al. 2007). These models incorporate the effects
of climatic transfer distances by reciprocally quantifying the
performance of populations in the climate where the seeds
were collected and where the trees were planted (Leites et al.
2012). Despite having different common drawbacks, such as
the lack of common gardens outside the species ranges to test
the ecophysiological limits of the species, this approach has
empirically shown that some populations are already more
suited than others to expected future climates, providing clear
applications for guiding management decisions (Benito
Garzón et al. 2011; Oney et al. 2013; Rehfeldt et al. 2014a;
Valladares et al. 2014; O’Neill et al. 2014).

Models based on provenance tests can help us in the design
of adaptation programmes to climate change by translocating
populations within and beyond their natural distribution
(Isaac-Renton et al. 2014; Benito-Garzón and Fernandez-
Manjarrés 2015; Prasad et al. 2016). However, the ecological
knowledge generated by these models needs to be integrated
in more formal decision frameworks to fully understand the
risks of all the possible options related with climate change
uncertainty (Polasky et al. 2011), as for example those related
to maladaptation of a translocated population to an unexpect-
ed climate extreme (Pedlar et al. 2012; Benito-Garzón et al.
2013b). Currently, various examples of decision frameworks
that incorporate the economic value associated with forests
exist (Hildebrandt and Knoke 2011; Yousefpour et al. 2012),
but translocation of tree populations has not yet been integrat-
ed into any decision framework. The multiple combinations
resulting from different climate change models and different
population sources make it very difficult to choose arbitrarily
one solution over the other, so techniques to reduce the

number of choices are urgently needed. One option is to use
‘robust decision theory’ that develops decision rules allowing
to choose one action among all the possibilities under uncer-
tainty (Regan et al. 2005). In decision-making, uncertainty is
represented by the likely ‘states of the world’ (i.e. different
scenarios of climate change including current climates), and
the combinations of the actions that can be taken under these
states of the world constitute the outcome or utility
representing the net benefits of choosing one action from a
set of alternative actions (Polasky et al. 2011).

For testing the utility of the robust decision approach,
one would ideally need population samples from a species
in which adaptive genetic variation is already known to be
large and in which climate change effects are already ap-
parent. In Europe, mortality and decline have increased
during the last decades in populations of temperate tree
species at the southernmost limit of their ranges (Allen
et al. 2010; Carnicer et al. 2011; Benito-Garzón et al.
2013c). It is probable that rear-edge, southern European
populations contain rare adaptive genetic combinations of
local and range-wide interest for adaptation under climate
change (Fady et al. 2016a). One species that embodies all
of these characteristics is the European silver fir Abies alba
(Mill.), a mountain conifer tree with ecological and eco-
nomic importance in central and southern Europe
(Roschanski et al. 2016). A. alba ranges from the
Pyrenees at its south-westernmost location, where there is
evidence of the existence of refugia during the Last Glacial
Maximum (Liepelt et al. 2009), to Central Poland in
scattered populations. The species presents high mortality
in the Pyrenees linked to climate warming (Linares and
Camarero 2011), and in Southern Alps due to the succes-
sion of droughts associated to bark beetle attacks (Cailleret
et al. 2014; Durand-Gillmann et al. 2014), whereas in the
core of its distribution in central Europe, there is an in-
crease in its growth, which could also be explained by
climate change bringing warmer and more humid summers
in certain areas (Büntgen et al. 2014).

Here, we propose to incorporate robust decision theory to
guide the translocation of populations under climate change as
an example of decision-making in a SES. The ultimate goal is
to generate weighted outcomes in an attempt to guide stake-
holders and decision-makers to minimise the risk of moving
populations within their species range.We present an example
based on a network of 29 Abies alba provenances derived
from across the species range in Europe and planted in five
common gardens in France. Tree height was analysed as a
function of climatic distance between the sources and the ex-
perimental sites obtained by the random forest algorithm
(Breiman 2001) and projected onto current and future climate
scenarios. The five experimental sites were selected as target
zones for applying the decision framework. Tree height
models were run for all of the representative concentration
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pathways described by the IPCC (AR5) for the year 2050
using the average of 10 global circulation models.

Material and methods

Climate scenarios

Current and future climate scenarios were downloaded
from WorldClim at a resolution of 30 s (Hijmans et al.
2005), which is approximately 1 km, a good resolution for
spatial prediction at the national level. Current climate
data in this dataset was estimated by averaging climate
data for the period 1960–2000. Future scenarios were
built by averaging 10 global circulation models: IPCC
AR5 (BCC-CSM1-1, CCSM4, GISS-E2-R, HadGEM2-
AO, IPSL-CM5A-LR, MIROC5, MIROC-ESM-CHEM,
MIROC-ESM, MRI-CGCM3 and NorESM1-M) for four
representative concentration pathways (regional concen-
tration pathway scenarios (RCPs) 2.6, 4.5, 6.0 and 8.5),
which predict an average increase of global mean surface
temperature between 0.1 and 2 °C in France by 2050
(IPCC 2014).

From the 21 climatic variables initially tested, only nine
were used in the models because they retained the highest
proportion of the variance explained in preliminary runs:
mean annual temperature (MAT), maximum temperature of
the warmest month (MTWM), minimum temperature of the
coldest month (MTCM), annual precipitation (AP), tempera-
ture seasonality (TS) defined as the variation of the annual
temperature in relation with the monthly temperature average,
annual range of temperature (ART; MTWM−MTCM) and
precipitation seasonality (PS) defined as the variation in
monthly precipitation over the total annual precipitation (var-
iation coefficient). Two long-term indices of climate extremes
for maximum temperature (DTMAX) and minimum temper-
ature (DTMIN) were calculated as the differences between the
maximum and minimum temperatures, respectively, recorded
between 1901 and 2005 by the Climatic Research Unit (http://
www.cru.uea.ac.uk/data) and the mean temperature for the
selected period (the present and the four RCPs for 2050). In
addition, climate transfer distances (TD) were calculated for
all of the climatic variables as the difference for the given
climatic variable between the planting sites and the locations
of provenance origin (seed sources) and added to the model as
another source of climate variation.

Provenance test design

One of the major limitations with existing provenance tests
is that most of them have been designed to test for local
adaptation within the range of the species. Because the
levels of local adaptation are unknown, researchers look

for as many populations as possible coming from as many
different places from the natural species distribution. In
practice, from all the provenances tested, only a subset
may show enough phenotypic and genetic divergence use-
ful for the management question in mind. In our case, as
we focused on translocations under climate change scenar-
ios, we needed to identify first those that stick out as hav-
ing clear local adaptation to a given climate. For other
purposes, not finding differences between populations is
actually a good thing as different provenances can be eas-
ily exchanged for one another.

Hence, we first tested for differences among prove-
nances from the complete network available that com-
prises tree height measured at five trial sites located
across France (Supplementary Table S1), where 29 prov-
enances from 11 European countries (France, Switzerland,
Czech Republic, Denmark, Slovakia, Italy, Austria,
Poland, Bulgaria, Bosnia Herzegovina and Germany)
were tested (Supplementary Table S2). Non-parametric
one-way Kruskal-Wallis analysis of the variance showed
significant provenance effect on tree height in four out of
the five planting sites (Supplementary Table S3). Post hoc
Mann-Whitney-Wilcoxon tests indicated that differences
among provenances within planting sites were due only
to a few provenances (Supplementary Table S3). Among
them, we selected those with French origin planted in at
least two planting sites: ‘Fanges’, ‘St. Evroult’ and ‘La
Joux’ for modelling purposes. We dubbed them regarding
their geographical location as ‘South’, ‘Northwest’ and
‘East’ provenances, respectively. Conveniently, for a
southern-northern simulation of translocations, these
provenances represent the range limits of the species in
Europe, at its southernmost and north-westernmost limits
and in the core of the distribution of the species, namely,
its eastern limit in France. We used trial locations as target
zones for predicting tree height to avoid geographical ex-
trapolation to far regions that have not been considered
when training the model (Fig. 1).

Tree height measures

We used individual tree height data because it can be consid-
ered a surrogate for growth potential and overall fitness when
provenance tests are planted in optimal climatic conditions
(Rehfeldt et al. 2014b). To maximise the number of trees used
in the analyses, we chose height measured at 9 years old (H9)
as the trait of interest as it had been measured in all sites (tree
height measures used in this analysis are available at Aalba.xls
(Electronic Supplementary Material 5)). All of the analyses
were performed with the standardised tree height ranging be-
tween 0 and 1 (with 1 representing the height of the tallest tree
in the planting site). For simplicity, hereafter, the term ‘tree
height’ is equivalent to standardised tree height.
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Modelling set-up

Only the three provenances showing significant differences
among them in tree height were used for modelling. We ran
tree height models for the present and 2050 climates for each
of the three selected French provenances and predict into the
trial sites. Finally, we included phenotypic variation in tree

height (the difference between 2050 and the present by target
region), in a decision framework that accounts for future cli-
matic uncertainty defined by the RCP scenarios and the pres-
ent climate as baseline. Next, we explain in detail each of the
steps (Fig. 2).

Non-parametric random forest regression of tree height
in France

Non-parametric, machine learning correlational models of
individual tree height for each of the three provenances
selected were calibrated as a function of the transfer cli-
matic distance estimated for the nine climatic variables
previously selected. The models were calibrated under
current climatic conditions and then projected into future
scenarios (Fig. 2). The transfer climatic distance is de-
fined as the difference of a given climatic variable be-
tween the planting sites and the origin of the provenance.
It represents a space for time transformation for studying
climate change effects on tree performance, because the
climate at the seed source can differ from the climate at
the planting site (Leites et al. 2012).

We built 15 (3 provenances × 5 states of the world)
provenance models using the random forest algorithm
(Breiman 2001; R library random forests (Liaw and
Wiener 2002)) to predict the response of tree height to
climate change per provenance. Each model was run

Fig. 1 Location of the planting sites (black circles) and the provenances
tested (grey circles) for Abies alba in France. The three provenances
outlined with black were used in the analysis to assess the effect of tree
height as focal provenances for their region (South, Northwest and East
regions of provenances). Planting sites (also used as target planting zones)
are represented by black circles. At the scale of the map, two pairs of
planting sites overlap even though they are physically separated

Fig. 2 Flow diagram depicting the main steps for decision-making under
uncertainty for selecting the preferable translocation option. Climatic
transfer distances between the origin of the provenances and the planting
sites where the trees are growing are used to train a non-parametric model
of tree height. Then, spatial predictions are performed for each of the

target zones (in this case, the same locations where the planting sites were
established). These predictions by target zones are compiled in a decision
matrix that allows us to apply standard decision rules to select preferable
options for translocation
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100 times to increase the robustness of the model. An
average of the prediction coming from the three models
by provenances was used as a proxy of the performance
of all provenances together.

The initial dataset was divided into calibration (2/3 of
the total) and validation datasets (1/3) to allow the
models to be independently evaluated. The random for-
est is a non-parametric technique that achieves regres-
sion by randomly building multiple individual regression
trees (Breiman 2001). The algorithm contains three main
steps. First, n groups of regression trees are included in
the bootstrapping process using the original data (n was
set to 500). Second, one regression tree is grown for
each group, randomly selecting the number of variables
at each node. The mean squared error ‘out of the bag’
(MSEOOB) is calculated for each tree with the remaining
data of each subgroup (OOB):

MSEOOB ¼ n−1 ∑
n

1

�
yi− yið ÞOOB

� �2

where yi
OOB is the mean of the OOB predictors. Finally,

all of the trees are grown without ‘pruning’, and the
final prediction results are produced by averaging all
of the trees. The likelihood of the model is estimated
using the proportion of the variance explained by the
model and the capacity for generalisation using the R2

coefficient calculated as the correlation between the test
data and the values estimated using the formula derived
in the training step. The percentage of the variance ex-
plained by the model was estimated using the following
equation:

%Variance explained ¼ 1−
MSE

Variance responseð Þ
where MSE is the mean squared error as calculated in the
training of the algorithm and Variance (response) is the orig-
inal observations.

Predictions of tree height per provenance for the current
and future climatic conditions were then performed for the
geographical location of the five trials where the trees have
been planted.

Robust decision-making matrix design

We classified our results in a decision matrix that al-
lows us to apply robust decision theory to our results to
guide the selection of optimal decisions under uncertain-
ty. In robust decision theory, uncertainty is characterized
by multiple equally probable views of the future where
no probabilistic distribution can be attributed (Regan

et al. 2005), as in our case the RCPs. RCPs can be
achieved through different combinations of economic,
technological, demographic, policy and institutional fu-
tures, i.e. they are not associated with unique socioeco-
nomic or emissions scenarios which make difficult the
attribution of a probabilistic distribution to each of them
(Moss et al. 2010; van Vuuren et al. 2011). The deci-
sion matrix combines the outcomes of tree height pre-
diction per provenance and target zones defined as the
trials where the trees are currently planted to avoid geo-
graphical and climatic extrapolation of the model pre-
dictions. We classify the outcomes of our modelling
analyses in the three main parts of a decision matrix:
the states of the world, the action to be taken under
each state of the world and the expected outcome
(utility) for each combination of state of the world and
action (Table 1). Our states of the world are represented
by the equally probable climate scenarios for the future
(year 2050; RCPs 2.6, 4.5, 6.0 and 8.5) and a baseline
climate scenario (current climates), and our actions are
defined by each of the provenances proposed for plant-
ing purposes under climate change. The outcomes are
represented by the tree height averaged for each prove-
nance in each scenario as predicted by the models. The
same structure of the decision matrix was repeated in-
dependently for each of the five target zones (TZs) cor-
responding to the current planting sites for which we
wanted to estimate the best planting option.

The goal of placing the results in a decision matrix is to
choose the action that maximises the expected utility under the
different states of the world. This selection can be performed
by establishing decision rules. For the sake of simplicity, we
chose the most typical decision rules (Peterson 2009; Polasky
et al. 2011) as an example of how decision-making can be
implemented in decisions taken at the regional scale, like for
forests: maximin, maximax and minimax regret. Based on
Table 1, the decision rules are defined as follows:

Maximin decision rule The best alternative action is the one
that maximises the minimum outcome obtained for each ac-
tion: a1 ≥ a2 if and only if min(a1) ≥min(a2).

Table 1 Simple decision matrix table representing two states of the
world (s1, s2), and two possible actions to be taken (a1, a2) with the
outcomes or utilities (a1s1, a1s2, a2s1, a2s2) that are a combination of
the states of the world and the actions

s1 s2

a1 a1s1 a1s2
a2 a2s1 a2s2
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Maximax decision rule The best alternative action is the one
that maximises the maximum outcome obtained for each ac-
tion: a1 ≥ a2 if and only if max(a1) ≥max(a2).

Minimax regret decision rule The best alternative action is the
one that minimises the maximum loss with alternative deci-
sions: a1 > a2 if and only if max {[(a1,s1) −max(s1)],[(a1,s2) −
max(s2)]} > max {[(a2,s1) −max(s1)],[(a2,s2) −max(s2)]}.

where ai are the possible values representing the different
actions to be taken (i.e. provenance choice for a given
target zone—TZ), si describes the states of the world
(RCP scenarios and baseline climate) and the combination
of ai,si is the utilities or outcomes (differences in tree
height between 2050 and the present conditions estimated
for each provenance model) in which the decision rules
rely for taking decisions.

Results

Prediction of tree height

Tree height models per provenance show medium–high
goodness of fit, with percentage of the variance explained
between 18.38 and 36.05 without considering the block
design of the provenance trials and between 28.02 and
64.23 when considering it (Table 2). Note, however, that
spatial predictions are only based on climate data because
the block design of the experimental layouts cannot be
incorporated in the predictions. The model calibrated with
the East provenance shows the highest proportion of the
variance explained (36.05%), and the model calibrated
with the South provenance the lowest (18.38%).

Making decisions under uncertainty

The decision matrix summarises the modelling results of tree
height prediction per provenance for the baseline climate sce-
nario and in the four RCPs for 2050 (Table 3 and
Supplementary Table S4 for the estimation of the maximum
regret) for the three actions and five target zones.

We applied the decision rules developed in the framework
of the decision theory under uncertainty (Table 1) to the out-
puts of our predictive models of mean tree height for the
present and future conditions (Table 3). The decision rules
are considered independently for each target zone. For exam-
ple, the maximin decision rule for the ‘Les Chauvets’ target
zone suggests that the preferable action will be the one that has
the maximum minimum value, which in this case is to trans-
locate seed sources from the ‘Northwest’ provenance (mini-
mum values of 0.672 relative tree height for all RCPs). In
contrast, the maximax rule always suggested the option of

translocation from the East provenance whatever target zone
was selected.

The minimax regret rule involves choosing the action that
minimises the highest regret. The regret is calculated as the
missed opportunity through having made the wrong decision
in each of the states of the world (Supplementary Table S4). In
our example, this rule indicates that it would be best for the
‘Northwest’ provenance to be translocated into all the tested
target zones.

Discussion

The main objective of formal decision rules is to reduce the
number of options upon which an informed decision can be
made. Here, we found that robust decision theory provided
a consensus solution and that there was convergence
among the three decision rules applied. The most preferable
decision pointed out that in a limited geographical space,
northern provenances can provide a good option to increase
tree height in the coming years. Our scenarios do not show
the expected outcomes for the future where tree population
is showing lower heights than under current conditions. On
the contrary, we showed here that for certain cases, climate
change would likely increase tree height. In those cases,
robust decision theory can be used to take advantage of
climate change for increasing productivity for a shorter ho-
rizon where climate change is still considered to be mod-
erate (2050 vs. 2100 for all RCPs).

Our approach can be applied to any tree species for
which phenotypic data measured on several common gar-
dens from several provenance tests exist. However, one of
the main limitations is the lack of climatic analogues in
the future, which would bias the height predictions for
future climates and hence influence the decision matrix.
We recommend therefore to keep this approach only for
predictions at the short term (2050), where the climate is
likely to be more similar to the current one than in the
long-term predictions (2100).

Making decisions under uncertainty

The goal of decision-making under uncertainty is to select
the action that maximises the utility using decision rules
that do not depend on probabilities, because one state of
the world is no more likely than any other. This is the case
with the future IPCC scenarios, in which no probability can
be assigned to any given scenario, and thus all of them
should be considered equally likely (Moss et al. 2010;
van Vuuren et al. 2011). The choice of a decision rule
necessarily determines the final decision, and this choice
is highly dependent on the trust that stakeholders have in
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their data and in their ability to deal with wrong decisions.
In our case, we selected three straightforward criteria based
on tree height to illustrate the possibilities of population
translocations under climate change to maximise tree pro-
ductivity, which can be easily discussed between re-
searchers and forest managers as they represent extremes
of optimistic versus pessimistic scenarios.

The maximin rule constrains the choice of actions by fo-
cusing on the minimum risk that can be afforded. In the case of
translocation of populations, it provides a minimum threshold
that a given population needs to reach to be translocated.
Therefore, this rule avoids selecting the smallest growing
provenance, without limiting for the maximum growth poten-
tial. In our example, themaximin rule prioritises the plantation

Table 3 Decision matrix used to address the choice of seed sources
under uncertainty. The states of world are represented by the current
climate (business-as-usual scenario) and the four representative
concentration pathways from the IPCC. Results of mean tree height

predictions were calibrated by provenance region (Provenance) and show
average prediction for each target zone (planting sites). Emerging deci-
sions derived from the three decision rules: maximin, maximax and mini-
max regret

Target zone
(planting site)

Provenance Present
conditions

2050 RCP
2.6

2050 RCP
4.5

2050 RCP
6.0

2050 RCP
8.5

Maximin Maximax Minimax
regret1

Mean ± sd Mean ± sd Mean ± sd Mean ± sd Mean ± sd

Les Chauvets South 0.614 0.601 0.601 0.575 0.601

Northwest 0.715 0.672 0.672 0.672 0.672 X

East 0.729 0.665 0.664 0.667 0.664 X X

All 0.686 0.646 0.645 0.638 0.645

FD Du Bois Génard South 0.542 0.601 0.601 0.575 0.601

Northwest 0.658 0.672 0.672 0.672 0.672 X X X

East 0.611 0.664 0.664 0.666 0.664

All 0.603 0.645 0.645 0.638 0.645

Les Boulaines La
Brugère

South 0.614 0.601 0.601 0.575 0.601

Northwest 0.715 0.672 0.672 0.672 0.672 X X X

East 0.644 0.665 0.664 0.667 0.664

All 0.658 0.646 0.645 0.638 0.645

Somail Chinchidou South 0.429 0.565 0.601 0.575 0.601

Northwest 0.567 0.672 0.672 0.672 0.672 X X X

East 0.523 0.665 0.665 0.667 0.665

All 0.506 0.634 0.646 0.638 0.646

Somail Sagassols South 0.429 0.565 0.601 0.575 0.601

Northwest 0.567 0.672 0.672 0.672 0.672 X X X

East 0.523 0.655 0.665 0.667 0.665

All 0.506 0.634 0.646 0.638 0.646

1 The intermediate regret table for calculating the minimax regret is shown in Supplementary Material (Supplementary Table S4)

Table 2 Likelihood (percentage of the variance explained, PVE) and
generalisation power (R2 coefficient, R) of the models calibrated by
provenances with the random forest algorithm including the block
effect per site of the provenance trials (block structure + climate) and

including only climate (climate). Results are shown as the mean and
standard deviation after 100 runs. The results of calibrating the models
with a combination of all three provenances are also shown (all 3 prov.)

Origin of the provenance Block structure + climate Climate

PVE R PVE R

Mean sd Mean sd Mean sd Mean sd

South 38.02 0.03 0.65 0.04 18.38 0.03 0.41 0.07

Northwest 40.27 0.03 0.66 0.04 19.19 0.04 0.40 0.07

East 64.23 0.02 0.81 0.02 36.05 0.03 0.58 0.04

All 51.55 0.01 0.75 0.02 26.58 0.02 0.51 0.03

Trees on the move: using decision theory to compensate for climate change at the regional scale in forest...



of trees from the Northwest provenance whatever trial was
selected as target zone.

On the other hand, the maximax rule has been criticised for
being too optimistic because the outcome of one action is
accepted only based on the maximum utility that it can gener-
ate (Peterson 2009). It has thus been considered a high-risk
strategy, which would only be adopted by a decision-maker
who is overly optimistic. In the example shown in this study,
the maximax rule indicates that planting trees from the
Northwest provenance is the preferable option to increase tree
height in 2050 for the five studied cases except for the ‘Les
Chauvets’ trial. This particular case is not a risky strategy
because it was confirmed by the minimax and minimax regret
rules as the preferable option. From the perspective of deci-
sion theory, the maximax rule does not provide a good option
for making decisions because the risks of the worst case sce-
nario are not taken into account for selecting the best action
and using admixtures of provenances could be a good com-
promise to avoid an overly optimistic approach that might
result in unwanted surprises.

The minimax regret rule chooses the action that minimises
the maximum loss likely to occur (= regret) within the alter-
native actions. It is a good compromise between the maximin
and maximax rules, and it was used in one of the few studies
applying decision theory in the field of conservation biology
to identify which species should be protected (Prato 2005). In
our example, this rule indicates always the same output for
each target zone: the preferable option would be to plant trees
coming from the Northwest target zone, a result that was also
obtained with the maximax rule and for the maximin rule for
all the target zones except one (‘Les Chauvets’).

The intuitive solution of mixing as many populations as
possible to increase the range of diversity available was not
an outstanding option under any of the decision rules.
However, we would expect that adding more provenances
across the species ranges could change this result. Planting
an admixture of trees from several provenances for the future
has already been discussed in the framework of assisted gene
flow to increase the genetic variability and therefore the range
of possibilities to promote the future adaptation of trees (Sgrò
et al. 2011; Havens et al. 2015) keeping inmind that more than
one generation is needed to see a fitness increase in the
populations.

Surprisingly, none of the decision rules proposed the intu-
itive solution of translocating from the south to northern loca-
tions in any of the target zones. This can be explained by the
fact that southern populations present generally lower height
potential than northern ones (our example is supporting this
hypothesis, showing that the Northwest provenance was al-
most always the preferable option) and it is in line with the
potential downsides of planting trees from southern prove-
nances because of the risks of extreme frost events in these
southern populations as have already occurred for some

translocations (Benito-Garzón et al. 2013a; Benito-Garzón
et al. 2013b; Martín-Alcón et al. 2016; Bucharova et al.
2016; Montwé et al. 2016). For instance, populations from
the south of the range of Pinus contorta in North America
and four perennial plants in Germany did not perform better
than the local populations under extreme heat events
(Bucharova et al. 2016; Montwé et al. 2016). Likewise,
Pinus pinaster populations from southern Europe planted in
northern locations suffered from high mortality after a frost
event, whereas the mortality was lower for the local prove-
nances (Benito-Garzón et al. 2013a). Other Mediterranean
trees such as Quercus coccifera, Q. ilex, Q. faginea and
Q. pubescens showed similar sensitivity to extreme cold
events in recent translocations (Martín-Alcón et al. 2016).
These examples show that moving populations from the south
to the north is more complex than what is intuitively thought
and it was not detected as a good choice by our decision
framework based on the decision rules, probably because cli-
mate change brings non-analog climates that are probably too
differentiated in north-south gradients and less differentiated
between colder and warmer areas at similar latitudes (Benito-
Garzón et al. 2014). There is a need for more experimental
tests into warmer and dryer conditions as well as translocating
not only up the mountains and up north for testing frost and
cold resistance but from similar latitudes (i.e. a horizontal
translocation) if populations exist.

Decision-making and socio-ecosystem
trajectories

Our analysis shows that decisions within social-ecosystem
(e.g. managed forest systems) can vary markedly even if ra-
tional rules of decision-making are incorporated into the
decision-making process. First of all, for this case and with
the available data, translocating trees from the South to the
North does not appear to be a robust solution, at least for the
early life stages of forest trees that we analysed. The translo-
cation of populations from northern locations was supported
in almost all the cases suggesting that the northern populations
present generally higher height potential than the southern
ones.We cannot answer with our data if this paradoxical result
stems from having samples of populations coming from the
core and the rear edge of the distribution of Abies alba or from
the current RCP climate change models that project very dis-
similar climates.

The common recommendation of planting trees from an
admixture of provenances to increase forest growth potential,
and thus also social-ecological resilience, is not supported in
the case of Abies alba in France. We do not knowwhether this
would be the case for other combinations of species, prove-
nances and target sites, but even if that were the case, suffi-
cient land is required if spreading risks with several
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provenances increasing operational costs. Planting at higher
density than usual also needs to be considered when genetic
diversity is part of the decision-making (see Lefèvre et al.
(2014) and Fady et al. (2016b)), or if there is very little knowl-
edge about the system. Extreme experiments of mixing pop-
ulations that can show results in few years’ time may be com-
plementary approach to formal decision-making that requires
in-depth knowledge of the system.

Our approach shows a strong convergence among the op-
tions considered, suggesting that northern provenances, even
if contra intuitively, would have higher tree potential than
populations coming from southern origin. However, we did
not consider the survival rates in our approach which could
probably turn our results in other direction. Moreover, we
could not test here one of the most difficult decisions for forest
managers to make, to favour translocated populations over
local ones if needed (Whittet et al. 2016). We acknowledge
that mixing populations from different provenances but al-
ways maintaining the local provenance seems a sensitive
and sound strategy for the climate expected for 2050, but this
option was not detected by our approach probably because of
the low number of provenances included in the analysis.

Social, cultural and psychological dimensions all make part
of real-life decision-making, and it would be unlikely that
local provenances would be discarded in afforestation
programmes because in almost all countries, if not every-
where, local provenances are automatically considered to be
the ‘best’ adapted to local conditions (Havens et al. 2015;
Fady et al. 2016b). Even if the message of planting from
Northwest provenances is clear from our decision table, it is
very probable that different forest managers would read the
decision table in a different way. Forest management adapta-
tion to climate change includes ‘no change management’ in
contrast with ‘trend-adaptive management’ (Fitzgerald and
Lindner 2013). A manager reading our results with the first
management option in mind would outweigh the business-as-
usual results (keep local provenances) before considering any
other option because in this case, forest managers would pre-
fer to make decisions about things they know well. On the
other hand, foresters following ‘trend-adaptive management’
would prefer to make decisions based on the best choices
defined by a decision framework as the one we presented here,
consisting of ‘assisted gene flow’ by planting provenances
from the Northwest that show a higher tree growth potential,
at least in the trials considered but we are pretty sure they
would also consider to leave some plots with local prove-
nances for the sake of having an alternative plan if models
happen to be wrong.

In any case, we see that following the procedures
outlined here, the number of options for making educated
guess can be effectively reduced bearing in mind that there
will always be the need to experiment to adapt adequately
to changing conditions.
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