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A B S T R A C T

The phenology of plants is a major driver of agro-ecosystem processes and biosphere feedbacks to the climate
system. Phenology models are classically used in ecology and agronomy to project future phenological changes.
With our increasing understanding of the environmental cues affecting bud development, phenology models also
increase in complexity. But, we expect these cues, and the underlying physiological processes, to have varying
influence on bud break date predictions depending on the specific weather patterns in winter and spring. Here,
we evaluated the parameter sensitivity of state-of-the-art process-based phenology models that have been widely
used to predict forest tree species phenology. We used sensitivity analysis to compare the behavior of models
with increasing complexity under specific climatic conditions. We thus assessed whether the influence of the
parameters and modeled processes on predictions varies with winter and spring temperatures. We found that the
prediction of the bud break date was mainly affected by the response to forcing temperature under current
climatic conditions. However, the impact of the parameters driving the response to chilling temperatures and to
photoperiod on the prediction of the models increased with warmer winter and spring temperatures. Interaction
effects between parameters played an important role on the prediction of models, especially for the most
complex models, but did not affect the relative influence of parameters on bud break dates. Our results high-
lighted that a stronger focus should be given to the characterization of the reaction norms to both forcing and
chilling temperature to predict accurately bud break dates in a larger range of climatic conditions and evaluate
the evolutionary potential of phenological traits with climate change.

1. Introduction

Bud break is a key phenological event that affects plant performance
by defining the period during which plants are able to grow, photo-
synthesize and produce their seeds. Therefore, the phenology of plants
is a major driver of agro-ecosystem processes (Cleland et al., 2007) and
biosphere feedbacks to the climate system (Richardson et al., 2013). It
drives ecosystem productivity (Richardson et al., 2012), carbon
(Delpierre et al., 2009), water (Hogg et al., 2000) and nutrient (Cooke
and Weih, 2005) cycling processes, as well as energy balance (Wilson
and Baldocchi, 2000). Moreover, plant phenology critically affects yield
and organoleptic quality of crop harvest (Nissanka et al., 2015) as well
as species distributions (Chuine, 2010). The onset of plant activity has
been reported to advance by 2.5 days per decade on average during the

last 50 years (Menzel et al., 2006), potentially increasing the risk of
frost damages on flowers and leaves (Vitasse et al., 2018a). These rapid
responses have been shown to be highly species-specific and are ex-
pected to have major consequences on species interactions, species
distributions, ecosystem functioning and forest carbon uptake (Cleland
et al., 2007; Chuine, 2010; Richardson et al., 2013). Therefore, accu-
rately predicting plant species phenology at both large and local scales
is of key importance for assessing the impact of global change on agro-
ecosystems and the multiple services they provide, as well as species
range shift and populations’ local extinction.

Fu et al. (2015b) showed however that the linear trend towards
earlier spring onset had been slowing down significantly during the last
two decades. One of the hypotheses put forward by the authors to ex-
plain this slowdown is the warming of winters. And indeed, recently,
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Asse et al. (2018) documented the negative effect of the warming of
winter on the leaf unfolding and flowering date of several tree species.
Air temperature is the major environmental factor regulating the dates
of budburst and flowering of plants (Rathcke and Lacey, 1985; Polgar
and Primack, 2011). In perennial species, temperature has an antag-
onistic effect on bud development depending on the season: low tem-
perature (called chilling) are required to release the endodormancy of
buds during winter, which is characterized by the inability of bud cells
to growth despite optimal growing conditions, while higher tempera-
ture (called forcing) are required to promote bud cell elongation in
spring. Recently, the effect of long photoperiod in compensating the
lack of chilling temperature has also been reported for some tree species
(Laube et al., 2014; Way and Montgomery, 2015; Zohner et al., 2016).

Our understanding of the environmental cues affecting species-
specific bud break dates has been increasing thanks to the compilation
of large phenological datasets (Menzel et al., 2006; Fu et al., 2015b),
and to experimental work in controlled conditions using growth
chambers (e.g. Caffarra and Donnelly, 2011; Zohner et al., 2016). This
empirical knowledge has been essential for the development and cali-
bration of process-based phenology models (Chuine and Regniere,
2017), that are used to predict spring phenology over large spatial and
temporal scales (e.g. Chuine et al., 2016; Gauzere et al., 2017). While
the relative contribution of environmental cues in driving spring phe-
nological responses in current and future climatic conditions is still
debated for most species (Chuine and Regniere, 2017; Laube et al.,
2014; Fu et al., 2015a,b), the recent declining of the response of spring
onset to global warming suggests that the relative influence of en-
vironmental cues driving the endodormancy phase varies with climatic
conditions. Since climate change is likely to generate non-equilibrium
conditions, the relative influence of the environmental cues might also
not remain constant over time. Overall, a strong expectation is that the
environmental cues releasing endodormancy should have an increasing
influence in warmer environmental conditions. Yet, comprehensive
analysis of the behavior of phenology models in different climates are
still lacking, while pioneer modeling studies in crops have shown that it
is expected to change depending on ecological conditions (e.g. Yin
et al., 2005; Zhang et al., 2014).

Recently, Huber et al. (2018) highlighted the importance of im-
proving our understanding of models behavior, and identifying key
parameters and processes that have the strongest effects on model
predictions under different ecological conditions. It is a major stage to
enhance model applications across large spatial and temporal scales, as
well as the robustness of model projections. We embrace this view and
acknowledge here the usefulness of sensitivity analysis to reach this
general objective. Sensitivity analyses are interesting statistical tools to
address the impact of parameters variations on the outputs of models
(Cariboni et al., 2007), allowing to evaluate both intrinsic (i.e. model
structure and parameters) and extrinsic (i.e. model inputs) sources of
variation. They can also highlight model limitations and directions for
further improvements (Saltelli et al., 2000; Cariboni et al., 2007).
Therefore, they represent an important step in the modeling cycle
(Saltelli et al., 2000; Cariboni et al., 2007; Augusiak et al., 2014;
Courbaud et al., 2015).

For forest tree species, most studies in phenology modeling have
focused on the analysis of extrinsic sources of variation, e.g. in-
vestigating the uncertainty of climatic inputs on simulations (Morin and
Chuine, 2005; Migliavacca et al., 2012). Ecological studies interested in
intrinsic sources of variation most often evaluate the effect of the var-
iation of single parameters on the model outputs, other parameters
remaining fixed at a given default value (e.g. Lange et al., 2016). The
major disadvantage of this approach is to neglect possible interactions
among parameters and to be unreliable in presence of non-linear re-
lationships between the parameters and the model predictions (Coutts
and Yokomizo, 2014). At the opposite, sensitivity analyses varying all
parameters simultaneously allow to account for parameter interactions
and non-linear relationships and providing robust sensitivity measures

for complex simulation models. While phenology model complexity is
increasing with our understanding of the physiological responses in-
volved in bud development, these interaction effects and non-linear
relationships can no more be overlooked. A first originality and aim of
this study was thus to compare the behavior of phenology models with
increasing complexity, and to disentangle the main and interaction ef-
fects of parameters on bud break date predictions.

The most commonly used phenology models are process-based,
meaning that they describe known or suspected cause–effect relation-
ships between physiological processes and some driving factors in the
organism's environment to predict the precise occurrence in time of
various phenology events (see for review Chuine and Regniere, 2017).
The parameters of these models are either defined using parameter
values measured in experimental controlled conditions, or statistically
inferred from phenological and meteorological data using inverse
modeling techniques. Since they describe causal relationships derived
from experimental work, the sensitivity analysis of process-based
models is supposed to reflect the sensitivity of the real processes
(Saltelli et al., 2000). Therefore, we can expect the sensitivity of phe-
nology models to specific parameters, e.g. driving the endodormancy
phase, to change with varying climatic conditions. The impact of cli-
mate on observed and simulated bud break dates is expected to be
complex, because of the cumulative and antagonistic effects of tem-
perature depending on the season on bud development (Chuine and
Regniere, 2017). For this reason, we also aimed at testing the parameter
sensitivity of phenology models to climatic conditions. We thus ana-
lyzed model behavior under specific patterns of winter and spring
temperatures, that produced either particularly early or late bud break
date. This study thus differ from that of Lange et al. (2016) which ex-
plored the behavior of phenology models in uniformly warmer or colder
conditions all along the year. In the present study we used different
observed climatically contrasted years with their specific weather pat-
terns.

Using a sensitivity analysis approach, we aimed at evaluating the
parameter sensitivity of state-of-the-art process-based phenology
models that have been widely used to predict bud break dates of forest
tree species. The main originalities of this study are to (i) compare the
behavior of models with increasing complexity; and, (ii) perform this
analysis under realistic and contrasted climatic conditions in order to
better estimate how the relative influence of parameters on model
prediction varies with specific weather patterns in winter and spring.
To perform this study we used historical climatic conditions en-
countered at different elevations in the Pyrenees Mountains, to cover a
large range of temperature variation, without variation of the day
length between sites. More specifically, we propose here to: (1) evaluate
whether increasing model complexity is related to higher interaction
effects between parameters; (2) identify key parameters and processes
that cause the highest variability in the output of the models under
different climatic regimes; (3) assess the physiological plausibility of
this sensitivity; (4) discuss our outcome for future studies that will use
phenology models to address key question in ecology and evolution. In
particular, we expect parameters related to physiological responses to
spring forcing temperatures to have a stronger impact on the prediction
of the bud break date in cold environmental conditions, and more
generally in historical climatic conditions in Western Europe. On the
opposite, we expect parameters related to endodormancy release (re-
quiring chilling conditions during winter) to have an increasing influ-
ence on the prediction of models in warmer environmental conditions.
Finally, we expect parameter interactions to have a greater influence on
the prediction of models with increasing model complexity.

2. Material and methods

2.1. Process-based phenology models

Process-based phenology models (see for review Chuine and

J. Gauzere, et al. Ecological Modelling 411 (2019) 108805

2



Regniere, 2017) are deeply grounded on experimental results which
have accumulated over the last 50 years and describe how the devel-
opment of buds, from dormancy induction in fall to bud break in spring,
is determined by the individual or interactive effects of different en-
vironmental cues, notably temperature and photoperiod. Most of these
models are based on the same framework (see Chuine and Regniere,
2017). Each development phase (e.g. endodormancy, ecodormancy) is
described by a submodel determining its reaction norms to various
cues. Several response functions describing the reaction norms to var-
ious cues can combine by addition, multiplication, or composition.
Development phases either are sequential (follow each other in time) or
overlap (a phase can start before the end of the previous one).

We chose three different kinds of model within this framework that
represent the three main types of environmental regulation of bud
break (of either vegetative or reproductive buds) in perennial species
and are the most widely used in phenology studies: UniForc (Chuine,
2000), UniChill (Chuine, 2000) and PGC (Gauzere et al., 2017). These
models differ by their complexity and by the environmental cues they
account for. While UniForc and UniChill are thermal ecodormancy and
endo-ecodormancy models respectively, PGC is a photothermal endo-
ecodormancy model. In the three models described below, t0 defines the
beginning of the endo- or ecodormant phase depending on the model, tf
the bud break date and F* the critical amount of forcing units to reach
bud break.

NULL – The UniForc model is an one-phase model, describing the
cumulative effect of forcing temperatures on the development of buds
during the ecodormancy phase. This model thus assumes that the en-
dodormancy phase is always fully released and that there is no dynamic
effects of chilling and photoperiod on forcing requirements. Bud break
occurs when the rate of forcing, Rf (Eq. (7)), accumulated since t0,
reaches the critical state of forcing F*:

∑ ≥R T F( ) *
t

t

f

f

0 (1)

with T, the daily average temperature.
UNICHILL – The UniChill model is a sequential two-phases model

describing the cumulative effect of chilling temperatures on the de-
velopment of buds during the endodormancy phase (first phase) and the
cumulative effect of forcing temperatures during the ecodormancy
phase. Like in the Uniforc model, bud break occurs when the accu-
mulated rate of forcing, Rf, reaches F* (Eq. (1)). The start of the eco-
dormancy phase corresponds to the end of the endodormancy phase, tc,
which occurs when the accumulated rate of chilling Rc (Eq. (8)) has
reached the critical state of chilling C*:

∑ ≥R T C( ) *
t

t

c

c

0 (2)

PGC – The PGC model has been designed to explain bud break date of
photosensitive species, which might represent about 30% of the species
(Zohner et al., 2016). It has been shown to be particular relevant to
simulate the bud break date of beech (Fagus sylvatica L.) which is one of
the most photosensitive species for bud break (Gauzere et al., 2017).
This is a photothermal model that integrates the compensatory effect of
photoperiod on insufficient chilling accumulation through a growth
competence function (GC; Gauzere et al., 2017). The growth compe-
tence function describes the ability of buds to respond to forcing tem-
peratures. It modulates the rate of forcing (Rf) through a multiplicative
function to define the actual daily forcing units accumulated by the bud
until bud break as:

∑ ≥P R T F(GC( ) ( )) *
t

t

f

f

0 (3)

with P and T, the daily photoperiod and average temperature respec-
tively.

The growth competence (GC) is related to the daily photoperiod
through a sigmoid function:

=
+ − −P

e
GC( ) 1

1 d P P t( ( ))P 50 (4)

with P50, the mid-response photoperiod and dP, the positive slope of the
sigmoid function.

P50 is not constant and depends on the state of chilling (CS): the
greater the accumulated rate of chilling, the shorter the mid-response
photoperiod, i.e. buds become sensitive to shorter photoperiod when
they have accumulated chilling:

= − +
+ − −P P P

e
(CS) (12 ) 2

1r
r

d t C50 (CS( ) )C 50 (5)

with Pr, the range boundaries of the parameter P50, so that
P50∈ [12− Pr ; 12+ Pr], dC the negative slope of the sigmoid function,
and C50 is the mid-response parameter if the sigmoid function, re-
flecting chilling requirements under short-day length. Finally, chilling
units accumulated as:

∑=t R TCS( ) ( )
t

t

c
0 (6)

For the sake of comparison, the version of the models used for this
study have the same type of response functions to forcing and to chil-
ling temperatures. The response function to forcing temperature, Rf,
was defined as a sigmoid function as it has been shown to be the most
realistic experimentally (Hanninen et al., 1990; Caffarra and Donnelly,
2011):

=
+ − −R T

e
( ) 1

1f d d T T( )T d 50 (7)

with dT, the positive slope and T50, the mid-response temperature of the
sigmoid function. We defined the rate of chilling, Rc, as a threshold
function (Caffarra et al., 2011b):

= ⎧
⎨⎩

<
≥

R T
T T
T T

( )
1 if
0 ifc d

d b

d b (8)

with Td, the mean temperature of day d and Tb, the threshold tem-
perature (also called base temperature) of the function.

As defined here, the UniForc model has 4 parameters (t0, dT, T50,
F*), the UniChill model 6 parameters (t0, Tb, C*, dT, T50, F*), the PGC
model 9 parameters (t0, Tb, C50, Pr, dC, dP, dT, T50, F*; Table 1).

2.2. Model calibration and validation

In order to set up the sensitivity analysis design, we first calibrated
and validated the studied phenology models for three emblematic tree
species in European forests: common beech (F. sylvatica), sessile oak
(Quercus petraea L.) and silver fir (Abies alba Mill.). These results were
used to (i) define the natural parameter variation among tree species
(Table 1) and (ii) identify contemporary climatic years that produced
particularly early and late spring phenology (Appendix 4). The three
models were parametrized for the three different species using ob-
servations of the bud break date in the Pyrenees and corresponding
weather data from 2005 to 2012.

The phenology of several populations located at different elevations
following the Gave and Ossau valleys in the Pyrenees have been yearly
monitored since 2005. The studied populations ranged from 131 to
1604m (9 sites) for beech, from 131 to 1630m (13 sites) for oak, and
from 840 to 1604m (6 sites) for fir (for further details about these
populations, see Vitasse et al., 2009). Data used for this study consisted
in the bud break date (BBCH 9) monitored from 2005 to 2012 in these
populations. Models were parametrized using daily weather data since
2004 from Prosensor HOBO Pro (RH/Temp, Onset Computer Corpora-
tion, Bourne, MA 02532) that have been placed at the core of each
monitored population (Vitasse et al., 2009). Day length was calculated
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according to the latitude of the meteorological stations (see Caffarra
et al., 2011a). Using these datasets, the three studied models were
parametrized for each species following Gauzere et al. (2017). The
models RMSE varied from 5.85 to 10 days, with mean RMSE of 6.28 for
beech, 6.92 for oak, 9.39 for fir (Appendix 3).

2.3. Sensitivity analysis

To perform the sensitivity analysis we sampled 1,000,000 para-
meters combinations for each model, to fully capture each parameter
space. To sample each parameter, we used beta distributions for the
slope parameter of the sigmoid functions (Eqs. (4), (5) and (7)) and
uniform distributions for other parameters (Appendix 5). The beta
distribution was chosen to account for the fact that variations in shape
parameters have differential effects on sigmoid responses (variation in
extreme shape values have a lowest impact on the global shape of the
sigmoid function). The bounds of the sampling distributions were de-
fined according to two criteria: (i) the sampled values needed to be
biologically relevant, i.e. make sense according to the empirical
knowledge about the physiological responses and the adjusted values
for the three species, and (ii) produce positioned dates, i.e. dates dif-
ferent from the last day of the year (DOY≠ 365). Due to these con-
straints, all parameters do not have the same variance (coefficient of
variation ranging from 0.05 to 0.18). Appendix 5 details the parameter
values adjusted for each species in the parameter space explored for the
sensitivity analysis.

Two different sensitivity indexes, describing the proportion of var-
iance of the model's output Y (here bud break date) explained by the
variation of a given parameter Xi, were calculated from the “Sobol” and
“Sobol–Jansen” methods implemented in the package “sensitivity” of
the R software. These two methods implement the Monte Carlo esti-
mation of the variance-based method for sensitivity analysis proposed
by Sobol (1993). More precisely, these functions allow estimating the
first-order and total-effect indexes from the variance decomposition,
sometimes referred to as functional ANOVA decomposition. The first-
order index is defined as:

= ∼S E Y X
Y

Var ( ( | ))
Var( )i

X i iXi

(9)

with

∑ = >
=

S S1 ( 0)
i

n

i i
1 (10)

Y is the prediction and Xi is the ith parameter of the model. The nota-
tion (X∼ i) indicates the set of all variables except Xi. The numerator
represents the contribution of the main effect of Xi to the variation in

the output, i.e. the effect of varying Xi alone, but averaged over var-
iations in other input parameters. Si is standardized by the total var-
iance to provide the fractional contribution of each parameter i.

And total-effect index as:

= = −∼ ∼ ∼ ∼S E Y X
Y

E Y X
Y

(Var ( | ))
Var( )

1 Var ( ( | ))
Var( )

X i i X i i
Ti

Xi Xi

(11)

with

∑ ≥ >
=

S S1 ( 0)
i

n

1
Ti Ti

(12)

due to the interaction effect, e.g. Xi and Xj both counted in STi and STj.
STi thus measures the contribution of Xi to the variation in the output,
including all variances caused by its interactions with any other input
variables.

2.4. Climatic data used for the sensitivity analysis

To perform the sensitivity analysis, we used the climate simulated at
different elevations, over a gradient of 1000m, for the period from
1956 to 2012, in order to explore a large range of climatic conditions.
To study the response of the models to realistic climate at different
elevations, we used measurements taken with local weather stations on
three forest sites, at 627, 1082 and 1630m a.s.l., along the Gave valley
(Prosensor HOBO Pro; Vitasse et al., 2009). As this weather dataset only
covered the period from 2004 to 2012, we also used Météo France
measurements at other stations located close to these sites, and data
from the SAFRAN reanalysis on the points of the systematic grid located
in the valley, to simulate the climate at the forest sites over a larger
period (1959–2012). The temperature data recorded with the local
HOBO sensors were linearly correlated to the climatic data derived by
the SAFRAN model of Météo France (Quintana-Segui et al., 2008) for
the same period. Daily minimum and maximum temperature data from
1960 to 2012 were generated based on the long-term SAFRAN outputs
using the following equation:

= +T X β X α X T( ) ( ) ( ).t t SAFRAN (13)

with X, the targeted site; βt and αt, the intercept and the slope of the
linear regression between TSAFRAN and THOBO for the period 2004–2012.
The coefficients used for this equation are provided in Appendix 1. Day
length was calculated according to the latitude of the forest sites (see
Caffarra et al., 2011a).

Over this large simulated period, we chose three climatically con-
trasted years, that corresponded to (1) a year with winter and spring
mean temperatures close to their global mean over the 1960–2012
period (“normal climatic year”; year 1966), (2) a year expected to

Table 1
Description and sampling distribution of the parameters of the three models used to perform the sensitivity analysis. For all parameters, except slope parameters,
values were drawn in uniform distributions � . For slope parameters d, values were drawn in beta distributions � = =α β{ 20; 1.3}. The species parameter range provides the
variation range of the adjusted parameters for three major European tree species (F. sylvatica, Q. petraea, A. alba). More details about the sampling distributions
choices, based on the model calibration and the empirical knowledge of about the physiological responses, are provided in Appendix 5). DOY=day of the year;
DU=developmental units; DR=developmental rate.

Parameter Models Description Units Species parameter range Sampling distribution

t0 UniForc Starting date of ecodormancy DOY [22; 90] � [−31; 92]
t0 UniChill, PGC Starting date of endodormancy DOY [−120;−62] � [−122;−31]
F* UniForc, UniChill, PGC Critical state of forcing DU [16.3; 106.8] � [1; 30]
T50 UniForc, UniChill, PGC Mid-response temperature to forcing °C [2.8; 15.7] � [0; 14]
dT UniForc, UniChill, PGC Slope of the forcing response DR/°C [0.051; 0.44] � = =α β{ 20; 1.3}

C* UniChill Critical state of chilling DU [1.1; 116.7] � [1; 60]
Tb UniChill, PGC Threshold chilling temperature °C [10.7; 14.9] � [7; 13]
C50 PGC Mid-response parameter of the photoperiod sensitivity DU [5.7; 192.3] � [1; 60]
Pr PGC Range boundaries of the mid-response photoperiod h [0.9; 1.5] � [1; 6]
dC PGC Slope of photoperiod sensitivity response h/units [−40;−0.64] � = =α β{ 20; 1.3} [−10;−10−5]
dP PGC Slope of the growth competence DR/h [0.26; 11.9] � = =α β{ 20; 1.3} [10−5; 10]
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produce early spring phenology, i.e. with cooler winter and warmer
spring temperatures than normal (“early climatic year”; year 2011) and
(3) a year expected to produce late spring phenology, i.e. with warmer
winter and cooler spring temperatures than normal (“late climatic
year”; year 1975; Table 2; Appendix 2). We checked that the three years
selected indeed generated early, average and late bud break dates using
the adjusted models for different tree species (Appendix 4). This range
of climatic conditions allowed us to credibly investigate the impact of
specific weather patterns in winter and spring on the behavior of the
models.

3. Results

3.1. Main trends in parameter sensitivity of phenology models

For the three models, the mid-response temperature during the
ecodormancy (T50) had the greatest influence on the predictions of the
models in most of the climatic conditions explored, except in the cool
winter-warm spring conditions producing early phenology (Fig. 1, and
see Appendices 6, 7 and 8 for detailed results). This strong influence is
both due to the main effect of T50 and its interaction with other para-
meters, and especially with dT, T50× dT defining the shape of the for-
cing response during the ecodormancy phase. Under the conditions
producing early phenology, the main parameters affecting the predicted
bud break date were t0, T50 and F* for UniForc, UniChill and PGC re-
spectively (Fig. 1a). Note that the influence of the parameters on the
predictions of the models was significantly affected by their coefficient
of variation (i.e. parameters that had the highest variation also had the
highest influence; Fig. 2). However, this effect only explained a small
proportion of the total variation in the total-effect of the parameters
(R2= 0.29).

3.2. The sensitivity to model parameters varies with model complexity

The sensitivity of model predictions to the variation in model
parameters highly depended on the phases and processes modeled
(Fig. 1). Predictions of the ecodormancy model UniForc were more
sensitive to the t0 parameter, i.e. the model starting date, than the
predictions of the endo-ecodormancy models UniChill and PGC, parti-
cularly under the climatic conditions producing early phenology
(Fig. 1a and b). Predictions of the thermal model UniChill were more
sensitive to the critical amount of chilling to release dormancy (C*
parameter) than the predictions of the photothermal model PGC to the
equivalent parameter (C50). Predictions of this latter photothermal
model was more sensitive to the critical amount of forcing (F*) than
that of the thermal models UniForc and UniChill. Finally, predictions of
the UniChill model were more sensitive to the mid-response tempera-
ture during ecodormancy (T50) than that of the UniForc and PGC
models, which presented similar sensitivity to this parameter (Fig. 1).

Depending on the model complexity, the uncertainty in the predictions
will thus reply in the accurate calibration of different key parameters.

3.3. The sensitivity to model parameters varies with climate

The sensitivity of the model predictions to the variation in model
parameters also changed according to the climatic conditions experi-
enced during winter and spring (Fig. 3). In the three models, the sen-
sitivity of the predictions to the mid-response temperature during
ecodormancy (T50) decreased with warming temperature (Fig. 3), while
the sensitivity to the parameters driving the endodormancy phase (e.g.
t0 in the UniForc model, C* in the UniChill model, dP and C50 in the PGC
model) increased with warming temperature (Fig. 3). The sensitivity of
the endo-ecodormancy models to the critical amount of forcing to reach
bud break (F*) was also higher in warmer conditions. This is probably
because, even if forcing accumulation becomes less limiting with
warming temperature, F* still represents the minimum duration of the
ecodormancy phase and thus strongly drives bud break date.

The sensitivity of the predictions of the PGC model to both the
critical amount of chilling (C50) and the parameter determining the
sensitivity to photoperiod (dP) increased with warming temperature
(Fig. 3). But, in such conditions, the sensitivity of PGC model predic-
tions to the photoperiod related parameter was higher than that to
chilling related parameters (C50 and Tb; Fig. 3). Finally, the sensitivity
of PGC model predictions to the starting date of endodormancy (t0)
tended to increase with warming temperature conditions, while that of
the Unichill model remained constant and low (Fig. 3). This result may
be explained by the differences in growth competence modeling be-
tween these two models. The growth competence function of the PGC
model is not null in autumn but decreases with the decreasing day
length, and induces endodormancy. If temperature conditions are par-
ticularly favorable, some forcing units can be accumulated before en-
dodormancy is fully induced contrary to the Unichill model. This
therefore gives an increasing importance to t0 in driving bud break
dates in warmer temperature conditions.

For the three models, the increasing influence of the endodormancy
vs ecodormancy related parameters on bud break date predictions can
already be noticed in warm winter conditions.

3.4. Main and interaction effects

In the results above, we describe the influence of the parameters on
the predictions of the models based on their total effect, which include
both main and second-order interaction effects. However, it is also in-
teresting to decompose these effects to understand their relative con-
tributions to the variation of bud break dates. For most parameters, the
total effects were mainly due to main (or first-order) effects, and in a
lesser extend to interaction effects between parameters (or second-
order effects; Fig. 1). Second-order effects always explained less than
15% of the predictions variation (while the largest first-order effect
explained more than 50% of the output variation; Fig. 4 and Appendix
9). Interestingly, interaction effects did not modify the relative influ-
ence of the parameters on the predictions of the models (Fig. 1).
Nevertheless, total interaction effects represented an important source
of variation in the predicted bud break dates (Fig. 4), in particular for
the most complex models.

The total influence of interaction effects on model predictions also
varied with the specific weather patterns in winter and spring. For
UniForc, total interaction effects were found to be more important in
the warm winter-cool spring conditions, producing late phenology,
while for PGC, these effects were more important in the cool winter-
warm spring conditions, producing early phenology (Fig. 4a and c). The
interaction between the parameters T50 and dT had the largest effect on
the predicted bud break date, notably in the coldest temperature con-
ditions (dT× T50; Appendix 9). These two parameters define the shape
of the response to temperature during ecodormancy in the three

Table 2
Detail of the climatic conditions used to perform the sensitivity analysis of the
phenological models. With TNovDec, the average temperature of November and
December of the previous year (in °C); TJanFeb, the average temperature of
January and February of the focal year (in °C) and TMarAprMay, the average
temperature of March, April and May of the focal year (in °C).

Elevation Year TNovDec TJanFeb TMarAprMay

627m 1966 7.18 6.37 11.45
1975 8.97 7.46 10.23
2011 5.72 6.99 14.52

1082m 1966 5.85 5.12 9.44
1975 7.42 6.018 8.40
2011 4.64 5.72 12.02

1630m 1966 3.20 2.50 6.54
1975 4.67 3.33 5.56
2011 2.07 3.07 8.94
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models. For the PGC model in the warmest climatic conditions, the
interaction between the endodormancy starting date (t0) and the pho-
toperiod sensitivity (dP) also had an impact on the predicted bud break
date (t0× dP; Appendix 9). The influence of interaction effects thus
tended to increase with model complexity, but also varied with specific
weather patterns in winter and spring.

4. Discussion

4.1. Bud break date predictions mainly depend on the forcing response
under current climatic conditions

The sensitivity analysis of the studied process-based models showed

that the mid-response temperature of the ecodormancy phase (called
here T50) plays a critical role in the prediction of bud break date under
current climatic conditions. This result applies whether models account
or not for an endodormancy phase or a photoperiodic control of bud
development. It therefore suggests that the response to forcing tem-
perature during the ecodormancy (defined by both T50 and dT in the
studied phenological models) is a major physiological response driving
the variation of bud break dates in temperate plant species in historical
and current climatic conditions. This finding is consistent with previous
correlative modeling studies showing that bud break date variation was
mainly driven by the mean temperature of the two preceding months,
which roughly corresponds to the ecodormancy phase (e.g. Menzel
et al., 2006). It is also consistent with previous process-based modeling

Fig. 1. Main and total effects of the parameters on the predictions of the three studied models in the most contrasted climatic conditions. The main effect (or first-
order effect) quantifies the individual effect of a parameter, i.e. without interactions. The total effect represents the first- and second-order effects (i.e. with second-
order interaction effects). These effects quantify the proportion of variance of the model's prediction explained by the variation of a given parameter. (a) “Early
conditions” corresponds to climatic conditions at 627m in 2011, producing the earliest phenology, (b) “standard conditions” to climatic conditions at 1082m in
1966, producing intermediate phenology, and (c) “late conditions” to climatic conditions at 1603m in 1975, producing the latest phenology over the range of
conditions explored. The details of the results for each site and year are given in Appendix 8.
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studies showing that models simulating only the ecodormancy phase
explained as much variance in bud break dates as models simulating
both the endo- and ecodormancy phases (Linkosalo et al., 2006;
Gauzere et al., 2017). The similar performance of the two types of
model suggested either that the fulfillment of chilling requirements had
not been a limiting factor so far, or that the endodormancy phase is not
accurately modeled (Linkosalo et al., 2006; Chuine et al., 2016). Our
results support the first hypothesis, i.e. winter chilling temperature
have played a minor role in bud break variations so far, which also
explains why the response of plant species to climate warming has so
far resulted in an advancement of the bud break dates (Menzel et al.,
2006). A methodological consequence of this is that phenological re-
cords in natural populations may not allow estimating accurately en-
dodormancy model parameters (Chuine et al., 2016).

4.2. Bud break date predictions are increasingly dependent on chilling
temperatures and photoperiod as climate warms

We found that the effect of the reaction norm to forcing temperature
on the prediction of the bud break date decreased with warming spring
conditions, while the effect of chilling accumulation during the en-
dodormancy phase increased with warming winter temperature for the
thermal endo-ecodormancy models UniChill and PGC. This suggests
that in warmer environmental conditions reaction norms to tempera-
ture during both bud endodormancy and ecodormancy are critical in
determining bud break dates. This result is supported by several recent
experimental studies showing that temperature sensitivity of the bud
break dates was currently decreasing, likely due to an increasing in-
fluence of warming winters on bud endodormancy (Fu et al., 2015a,b;
Vitasse et al., 2018b; Asse et al., 2018). In particular, Vitasse et al.
(2018b) showed that a differential response to chilling temperatures
between trees living at low and high elevations may explain the dif-
ference in the temporal trends of bud break date advancement observed
at different elevations with warming conditions during the last decade.
Overall, these results highlight that the influence of chilling tempera-
tures on bud development can no longer be overlooked, and that the
correct estimation of the parameters governing the endodormancy
phase is required to accurately predict bud break.

The sensitivity analysis of the photothermal endo-ecodormancy
model PGC showed that the influence of the photoperiodic response
(through the dP parameter) on the prediction of the bud break date

increased in warmer environmental conditions. A growing number of
studies suggest that the phenology of up to 30% of tree species might be
sensitive to photoperiod at various degrees (Laube et al., 2014; Zohner
et al., 2016). Understanding how this increasing effect of the photo-
periodic cue will affect the variation of bud break dates in future cli-
matic conditions is an issue still debated (Fu et al., 2015b; Gauzere
et al., 2017). However, in the most sensitive species, such as beech, it
has been suggested that this sensitivity may counteract the negative
effect of insufficient chilling during winter (Gauzere et al., 2017). Our
results thus highlight that a stronger focus should be given to the
modeling of the reaction norm to photoperiod to be able to accurately
predict bud break dates of up to 30% of tree species in future climatic
conditions.

4.3. Originality and limits of the study

Only a few studies have performed sensitivity analysis of phenology
models so far. They either analyzed the behavior of phenology models,
identified the main sources of uncertainties in bud break date predic-
tions, or assessed the consequences of phenological uncertainties on
related processes (e.g. Morin and Chuine, 2005; Migliavacca et al.,
2012; Zhang et al., 2014; Lange et al., 2016). A key results from these
previous studies is that uncertainty in climate conditions, notably
generated by climate scenarios, was a greater source of variation in
phenological date projections than uncertainty in phenology models
(Migliavacca et al., 2012).

To our knowledge, this study is the first to have compared the be-
havior of different phenology models, with increasing complexity, and
to perform this analysis under different weather patterns in winter and
spring. The results found here are in line with a recent sensitivity
analysis of species-specific phenology models, which found an in-
creasing importance of chilling requirements and photoperiod in warm
climatic conditions for temperate tree species (Lange et al., 2016). The
consistency of our results with the sensitivity analysis of other phe-
nology models strengthens the scope of our study, and thus further
stress the importance of investigating the behavior of phenology models
in contrasted climatic conditions in order to fully embrace their ro-
bustness.

While the climate we used to perform the sensitivity analyses covers
a small geographical region, it still explores a large range of variation in
winter and spring average temperatures (TNovDec ∈ [2.07 ; 8.97],
TMarAprNay∈ [5.56 ; 14.52]). This temperature variation is less important
than in other sensitivity analyses (e.g. Lange et al., 2016), but it is large
enough to allow extrapolating the results of this study at larger spatial
scales. The aim of the present study was not to investigate the behavior
of phenology models under climate change scenarios. Nevertheless, by
extrapolating our results on the impact of warming conditions on
parameter sensitivity, we can expect the influence of the parameters
governing the endodormancy to overall have more influence on bud
break date predictions in the future.

Due to the high computational requirement of sensitivity analyses,
most studies usually neglect, partially or completely, interaction effects
between model parameters as a source of output variation (e.g. Lange
et al., 2016). However, the complexity of process-based phenology
models tends to increase as we gain better knowledge about the phy-
siological processes involved in bud development. With increasing
model complexity and realism, we can expect interaction effects to have
non-negligible influence on the prediction of the models, and thus local
sensitivity analysis to partially reveal the effect of parameters on output
variance. Our results also suggest that model complexity would result in
higher uncertainty in bud break dates because of interaction effects.
Moreover, increasing model complexity would generate higher un-
certainty in model outputs because of parameter compensation during
the statistical adjustment, notably if models are used to perform pre-
dictions outside of the range of the climatic conditions used to adjust
them (Gauzere et al., 2017).

Fig. 2. Variation in the total-effect of parameters on the predictions of all
models according to their coefficients of variation (CV). The coefficient of
variation of each parameter was estimated from its sampling distribution. The
R-squared was estimated using a linear model. The parameters with the highest
CV were also the most influential on models prediction.

J. Gauzere, et al. Ecological Modelling 411 (2019) 108805

7



Here, we showed that sensitivity analysis of process-based phe-
nology models are relevant to identify key parameters and processes
that have the largest effect on phenology (Migliavacca et al., 2012;
Lange et al., 2016). However, the choice of the parameter variation
range likely affects the results of such analyses. Since for most plant
species, the range limits or shape of the distributions of the physiolo-
gical parameters in natural populations are unknown, such sensitivity
analyses rely on assumptions that cannot be tested. Here, we might
have overestimated the real contribution of T50 and F* to the variation
of the bud break date due to uneven variances in parameter sampling

distributions. This effect of parameter variation on the outcome of
sensitivity analyses should be more acknowledged. To improve the
scope and relevance of sensitivity analyses, more attention should be
given to the characterization of the natural variation of the physiolo-
gical parameters described in process-based models (e.g. Burghardt
et al., 2015).

4.4. Implications for the adaptive potential of phenological traits

While the sensitivity analysis of phenology models has direct

Fig. 3. Variation in the total effect of the most biologically relevant parameters on the predictions of the three studied models according to climatic variables (see also
Appendix 7). The total effect quantifies the proportion of variance in the model's prediction explained by the variation of a given parameter (considering its main and
interaction effects). We chose to represent the average temperature of January and February because it is known to be involved in endodormancy release, and the
average temperature of March, April and May because it is known to be involved in bud growth during ecodormancy. The climatic gradient corresponds to the nine
contrasted climatic conditions used to perform the sensitivity analyses.
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implications for ecological and climate change studies, we wanted to
highlight also here their usefulness for evolutionary studies. The bud
break date is among the most genetically differentiated trait across
species distribution ranges (De Kort et al., 2013), suggesting that it is
strongly involved in the process of local genetic adaptation. Evolu-
tionary response of the bud break date is expected to depend on which
parameters present genetic variation and how this variation impacts the
bud break date, i.e. the expressed trait variation. Sensitivity analysis
outputs can be used to address this second issue. For example, our re-
sults show that the mid-response temperature of the ecodormancy
phase (T50) has the highest impact on the variation of the bud break
date in most conditions. We thus suggest that future experimental re-
search consider measuring the genetic variation of this key physiolo-
gical trait in natural populations and crops to evaluate their adaptive
potential. This can be done by monitoring bud break of several geno-
types either in varying controlled conditions (e.g. Caffarra et al.,
2011b), or by monitoring growth transcriptor factors in natura or in the
field using new transcriptomic technics (e.g. Nagano et al., 2012), or
even better by combining both approaches (e.g. Satake et al., 2013).
Given the increasing importance of the response to chilling tempera-
tures during the endodormancy phase to determine the bud break date
in warming conditions, future experimental research might additionally
consider measuring the genetic variation in chilling requirement and
reaction norms to chilling temperature, especially in species requiring
large amount of chilling. Finally, future experimental research should
consider measuring the genetic variation in the reaction norm to pho-
toperiod in most sensitive species, and notably beech (Goyne et al.,
1989 for example in crops).

5. Conclusions

The identification of the physiological responses underlying the bud
break date variation in current environmental conditions is an im-
portant on-going experimental research field (Fu et al., 2015a,b; Vitasse
et al., 2018b). Assuming that process-based phenology models reflect
real physiological responses and processes, the analysis of their beha-
vior under contrasted climatic conditions can provide valuable in-
formation about this issue. Our results highlighted the major influence
of the response to forcing temperature on the prediction of the bud
break date, but also an increasing importance of the responses to
chilling temperature and photoperiod in warming environmental con-
ditions. Changes in the sensitivity of the prediction of phenology
models to their parameters with climatic conditions highlights that we

need to better take into account the temporal and spatial variation of
environmental conditions when analyzing phenological changes
(Vitasse et al., 2018b). More generally, we acknowledge here that the
sensitivity analysis of process-based models is a useful tool to under-
stand the relative contributions of environmental cues in driving phe-
notypic traits variation and their evolutionary potential (Donohue
et al., 2015; Burghardt et al., 2015; Lange et al., 2016).
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