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General Context: Climate change can positively or negatively affect abiotic and biotic

drivers of tree mortality. Process-based models integrating these climatic effects are only

seldom used at species distribution scale.

Objective: The main objective of this study was to investigate the multi-causal mortality

risk of five major European forest tree species across their distribution range from an

ecophysiological perspective, to quantify the impact of forest management practices on

this risk and to identify threats on the genetic conservation network.

Methods: We used the process-based ecophysiological model CASTANEA to simulate

the mortality risk of Fagus sylvatica, Quercus petraea, Pinus sylvestris, Pinus pinaster,

and Picea abies under current and future climate conditions, while considering local

silviculture practices. The mortality risk was assessed by a composite risk index (CRIM)

integrating the risks of carbon starvation, hydraulic failure and frost damage. We took into

account extreme climatic events with the CRIMmax, computed as the maximum annual

value of the CRIM.

Results: The physiological processes’ contributions to CRIM differed among species:

it was mainly driven by hydraulic failure for P. sylvestris and Q. petraea, by frost damage

for P. abies, by carbon starvation for P. pinaster, and by a combination of hydraulic failure

and frost damage for F. sylvatica. Under future climate, projections showed an increase

of CRIM for P. pinaster but a decrease for P. abies, Q. petraea, and F. sylvatica, and little

variation for P. sylvestris. Under the harshest future climatic scenario, forest management

decreased the mean CRIM of P. sylvestris, increased it for P. abies and P. pinaster and

had no major impact for the two broadleaved species. By the year 2100, 38–90% of

the European network of gene conservation units are at extinction risk (CRIMmax=1),

depending on the species.

Conclusions: Using a process-based ecophysiological model allowed us to

disentangle the multiple drivers of tree mortality under current and future climates.

Taking into account the positive effect of increased CO2 on fertilization and water use

efficiency, average mortality risk may increase or decrease in the future depending on
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FIGURE 5 | Variation of the mean values of mortality risk indices (CRIM, rFDmax , rNSC, and rPLC) under two current (CM5-hist in light gray and HadGEM-hist in dark

gray) and two future (CM5-8.5 in blue and HadGEM-8.5 in orange) climatic scenarios. Each scenario with locally prescribed silviculture (i.e., four possible silvicultural

systems) is represented with gray whisker box contouring, and can be compared to its reference without management (i.e., SS1), with black contouring. See legend

of Figure 3 for whisker boxes.

These changes in CRIMmax were associated to changes in tree
density and LAI. In average, silviculture (SS1–SS4) was associated
to lower LAI and density per hectare in P.abies and P.sylvestris.
Silviculture was associated to lower LAI only for F. sylvatica
and to lower density per hectare only for P. pinaster, while
it has no effect on LAI and density per hectare of Q. petraea
(Supplementary Figures 11, 13, 14).

3.5. The Risk of GCU’s Extirpation
We used the value of CRIMmax = 1, i.e., predicted occurrence
of mortality of the simulated stand during a period of time, as a
criterion of threat of extinction. Under the most severe climate
change scenario (HadGEM_rcp8.5), from 38% (F. sylvatica) to
90% (P. pinaster) of the GCUs are at threat of extinction in 2100
assuming that they are not managed, and these values are slightly
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FIGURE 6 | Variation of the mean values of mortality risk indices (CRIMmax , rFDmax , CRIMmax , and rPLCmax ) under two current (CM5-hist in light gray and

HadGEM-hist in dark gray) and two future (CM5-8.5 in blue and HadGEM-8.5 in orange) climatic scenarios. Each scenario with locally prescribed silviculture (i.e., four

possible silvicultural systems) is represented with gray whisker box contouring, and can be compared to its reference without management (i.e., SS1), with black

contouring. See legend of Figure 3 for whisker boxes.

higher if we assume they are managed following the current
local silvicultural practices (Table 2), from 40% (F. sylvatica) to
98% (P. pinaster) in this case. The evolution of the index of
mortality risk (CRIMmax) between current and 2100, under the
harshest climate change scenario (HadGEM_rcp8.5), is highly
variable among species: for F. sylvatica the risk will increase in
19% and decrease in 60% of the GCUs, whereas for P. pinaster

the risk will increase in 48% and decrease in 2% of the GCUs
(Table 2).

4. DISCUSSION

In this study, we used the process-based model CASTANEA to
simulate spatial and temporal variation in mortality risks due
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TABLE 2 | Variation of GCU extirpation threat between species under HadGEM RCP 8.5 future climatic scenario.

Species Management Total 0.75≥ CRIMmax Increased CRIMmax Exceeding 0.75 Decreased CRIMmax Falling below 0.75 No CRIMmax change

F.sylvatica SS1 526 201 (38%) 98 (19%) 28 (5%) 316 (60%) 139 (26%) 112 (21%)

P.abies SS1 658 422 (64%) 217 (33%) 75 (11%) 224 (34%) 82 (12%) 217 (33%)

P.pinaster SS1 61 55 (90%) 29 (48%) 19 (31%) 1 (2%) 0 31 (51%)

P.sylvestris SS1 412 323 (78%) 157 (38%) 37 (9%) 71 (17%) 18 184 (45%)

Q.petraea SS1 282 184 (65%) 75 (27%) 39 (14%) 104 (37%) 60 103(37%)

F.sylvatica SS1–SS4 526 212 (40%) 143 (27%) 31 (6%) 278 (53%) 133 (25%) 105 (20%)

P.abies SS1–SS4 658 490 (74%) 263 (40%) 96 (15%) 178 (27%) 69 (10%) 217 (33%)

P.pinaster SS1–SS4 61 60 (98%) 29 (48%) 24 (39%) 1 (2%) 0 31 (51%)

P.sylvestris SS1–SS4 412 393 (95%) 213 (52%) 91 (22%) 52 (13%) 15 (4%) 147 (36%)

Q.petraea SS1–SS4 282 179 (63%) 75 (27%) 39 (14%) 104 (37%) 65 (23%) 103 (37%)

For each species, under contrasted management scenarios (i.e., without or with management), we computed the number and percentage of CGUs with a high CRIM in 2100 (≥0.75);
the number of CGUs where the CRIMmax increases between current and 2100; the number of CGUs where the CRIMmax exceeding 0.75 after increases; the number of CGUs where
the CRIMmax decreases; the number of CGUs where the CRIMmax falling below 0.75 after decreases; the number of CGUs where no change of CRIMmax were observed. The third
column gives the total number of GCUs per species (as available in June 2017).

to hydraulic failure, carbon starvation and frost damage. These
risks were assessed in five major European tree species across
their distribution range, as a function of variations in climate, soil
properties and management practices. We focused on the risk of
mortality associated with droughts and frosts (winter, spring, and
fall frosts with varying frost resistance across season), two major
risks likely to increase in the future (Augspurger, 2013; IPCC,
2014; Charrier et al., 2018).

4.1. The Impacts of Drought and Frost Vary
Between Species and Across Distribution
Range
Considering the current climate, our results show that the
physiological processes driving the risk of mortality differ among
species. Carbon starvation drives themeanmortality risk (CRIM)
for P. pinaster; frost damage drives the CRIM for P. abies;
hydraulic failure drives the CRIM for Q. petraea and P. sylvestris;
and a combination of hydraulic failure and frost damage drives
the CRIM for F. sylvatica. When considering extreme climatic
events with CRIMmax, the risk is higher and the contributions
of the three focal physiological processes are more balanced.
The rank of simulated species-specific risks of hydraulic failure
or frost damage were not necessarily those expected from
physiological or phenological observations. Indeed, deciduous
broadleaves have a narrower safety margin for hydraulic failure
as compared to evergreen conifers (Choat et al., 2012; Martin-
StPaul et al., 2017). Late-leafing species such as P. abies have
a higher safety margin for frost damage as compared to
early-leafing species (Bigler and Bugmann, 2018). The low
contribution of carbon starvation to the mean risk index is
consistent with current ecophysiological knowledge (Martínez-
Vilalta et al., 2016). However, the fact that simulations are
initiated with small trees (diameter 5 cm) probably contribute
to explain this result. Simulations run with bigger and older
trees on average may show higher carbon starvation risk. We
also find that the physiological processes driving the risk of
mortality vary across species distribution ranges. The highest

risk of hydraulic failure is found under Mediterranean and
continental climates in Eastern Europe, associated to long and
severe droughts, which is consistent with other studies based on
PBMs or cSDMs (Gárate-Escamilla et al., 2019). As expected, the
places the most vulnerable to frosts are located at high latitude
and altitude.

Secondly, our results highlight that the evolution of mortality
risk under future climate by 2100 differs between species. CRIM
markedly decreases for broadleaved species and P. abies, and
slightly decreases for P. sylvestris. This decrease is driven by
decreasing risks of hydraulic failure and frost damage, which
compensates for the increasing risk of carbon starvation for
coniferous species. Broadleaved species remain at a low risk
of carbon starvation under future climate, which can be due
to their higher stomatal sensitivity to CO2. Indeed, Klein and
Ramon (2019) showed that conifers will need as much water
as they currently do to complete their photosynthesis under
future climate, while angiosperms will need less water for the
same amount of CO2 to complete their photosynthetic cycles. In
contrast, for P. pinaster, the CRIM increases due to increasing
risk of frost damage and carbon starvation. For the broadleaved
species and P. abies, our model predicts a marked reduction of
CRIM between current climatic conditions and future RCP 4.5
scenario, but not so much changes between RCP 4.5 and RCP 8.5
scenarios. This singular pattern suggests a non linear beneficial
effect of CO2 which compensates for the other harmful effects of
climate change.

The evolution of mortality risk under future climate by 2100
also differs through space. Overall, for coniferous species, the
risk of carbon starvation increases everywhere except in areas
where it was already high and in mountainous areas. The risk
of frost damage decreases or remains stable in most of Europe,
which may be due to less severe winters; however it increases
for P. pinaster in the Iberian Peninsula, likely due to earlier
budburst and late frost in this area (Vitasse et al., 2014). The risk
of hydraulic failure tends to decrease slightly throughout Europe
between the current and future climate, except in a few patches
mainly due to soil characteristics.
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4.2. The Impact of Current Management
Practices on the Risk of Mortality Under
Current and Future Climate Varies
Between Species
In our simulations, considering the current management
practices has an ambivalent effect on the risk of mortality.
Under current climate conditions, local forest management
practices decrease in average the mean risk of mortality (CRIM)
for P. sylvestris, slightly increase it for P. abies and has no
impact on the other species. Under future climate conditions,
the same local forest management practices still decrease the
CRIM for P. sylvestris, slightly increase it for P. abies and P.
pinaster and has no impact for the other species. Moreover,
for all species, silviculture increases the risk of mortality
due to carbon starvation when considering extreme drought
events (rNSCmax).

Our results are thus at odds with previous studies showing
that forest thinning could mitigate drought impacts (Elkin et al.,
2015; Sohn et al., 2016). The simulated management practices
reduce the average density of forest stands in coniferous species.
This leads to a decrease of the average tree biomass and thereby
its respiration. But the leaf area index (LAI) and thus the
photosynthesis are also reduced by thinning. Hence, the effect of
management practices on the risk of carbon starvation simulated
by CASTANEA depends on the respective effects of forest
thinning on respiration on the one hand, and photosynthesis
on the other hand. For P. sylvestris this effect is always stronger
on respiration and therefore management practices decreases
the carbon starvation risk under current and future climates.
But for P. abies and P. pinaster, management practices have
the opposite effect in the future and increase the risk of
carbon starvation.

The leaf area index decrease should also mitigate the
risk of hydraulic failure by decreasing evapotranspiration (in
average by 6% in our simulations, see Supplementary Table 5).
That is why the increase in rPLC with silviculture for some
species is quite unexpected. In these cases, the decrease in
leaf area index is greater than the decrease in transpiration
(data not shown), because leaf area index is quite high.
The leaf midday water potential that determines the risk of
cavitation is not calculated from the total tree transpiration,
but from the transpiration per m2 of leaf. Physiologically,
the higher the flux at leaf level, the greater the risk of
cavitation. When the canopy is dense there are more leaves
and therefore the flux is distributed over more surface,
which explains why in these cases, rPLC is finally lower
without silviculture.

This study is among the first attempts to simulate the large-
scale effects of management practices with an ecophysiological
PBM (see also Härkönen et al., 2019). Our simulations suggest
that the impact of silviculture on the risk of mortality
might not be so obvious and depend on species, the sites
and the climatic scenarios considered. In particular for
broadleaved species, the impacts of silviculture on the risks of
mortality are uniformly low over species’ distribution range.
To improve these predictions, future simulations should take

into account the variations in age and size class distribution
at initialization.

4.3. The Threat of GCU Extirpation Under
Climate Change Differs Among Species
Under the harshest climate change scenario, our projections of
mortality risk in the five in situ conservation networks predict
that 38–90% of the GCUs are at threat of extinction in 2100,
depending on the species. These PBM-based projections aremore
pessismistic than earlier BNM-based projections predicting that
33–65% of the GCUs will be at the limit or outside their current
climatic niche (Schueler et al., 2014). This unexpected contrast
between PBM and BNM predictions has two main explanations.
First, in contrast to Schueler et al. (2014) assumption that
95% of the species’ current climatic niche is considered to
be riskless, our CRIMmax predictions indicate that most of
the CGUs are already in a high mortality risk zone under
current climate. This is consistent with the policy of choosing
some GCUs located in areas that are already experiencing
climate-related selection pressures. There are few GCUs (from
5 to 31%) shifting from low CRIMmax (<0.75) in the current
climate to high CRIMmax in the future climate (>0.75); by
contrast, 12–51% of CGUs shift from high CRIMmax to low
CRIMmax. Secondly, and contrasting with the line of previous
studies (Morin and Thuiller, 2009; Cheaib et al., 2012), we
used the maximal and not the mean risk index of mortality to
predict the threat of GCU extirpation. We considered spatio-
temporal patterns of mean CRIM variation useful to disentangle
how hydraulic failure, carbon starvation and frost damage
respectively contribute to the risk of mortality; however, we
argue that realistic predictions of the extirpation threat should
rather account for extreme climatic events triggering maximal
physiological risks of mortality. Doing so,we may overestimate
this threat. In particular, because of the coarse spatial resolution
of our simulation grid (0.5 × 0.5◦), the local climates at actual
CGUs location may differ from the average climate at the
grid point.

Our projections also show that traditional management
systems would not help to reduce the mortality risk in those
areas, and that risk reduction would require other specifically
dedicated management practices. Our PBM approach lies on
the pessimistic side of the projections because it does not
account neither for the within-stand diversity of the response
to climate, which is a factor of resilience of the populations
facing disturbance since not all trees are equally threatened at
the same time, nor for the evolutionary potential of each forest
stand, which is a factor of adaptation from one generation
of trees to the next. However, in the harshest situations,
silvicultural interventions and natural evolution might not be
sufficient to conserve the local population in situ, and ex
situ conservation strategies, either dynamic or static, should
be considered.

The EUFORGEN program has developed an operational
decision support tool for the management of GCU based
on demographic, genetic and disturbance indicators that can
be measured by different verifiers, and recommended actions
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depending on the levels of these indicators (Rudow et al., 2020).
A combined index of mortality risk such as CRIMmax could be
used as a verifier to inform the risk of population loss.

4.4. Future Direction for PBM
Improvements
The growth and NPP simulated with CASTANEA across the
whole Europe (i.e., potential niche) under current climate were
consistent with the realized distribution range of broadleaved
species, but less so for coniferous species. Three hypotheses
might explain why NPP variations may less correctly predict the
realized distribution of coniferous species: (1) their distribution
is rather determined by biotic interactions and management
practices rather than by climate and soil conditions; (2)
the coarse climatic grid does not correctly represent local
climate conditions in mountainous areas where P. sylvestris
and P. abies are located; (3) the realized distribution is not
limited by survival at adult stage, but by reproduction or
survival at seedling stages (Niinemets and Valladares, 2006).
In addition, for P. abies, in the comparison with the CO2

flux measurements, we may underestimate the GPP if the
average value of Vcmax used for the simulations and obtained
from the literature underestimate photosynthesis (Walker et al.,
2014), which can lead to too low values especially at the
northern and eastern boundaries. The large-scale validation of
CASTANEA needs to be improved for some species to better
predict mortality. Two approaches, out of the scope of the
current study, can be used. The first approach would be to
simulate mortality at stand scale and compare it with mortality
observations at European scale, as done in Petit-Cailleux et al.
(2021) at local scale. A second one would be to compare
NPP simulated with those measured from satellite data. These
two approaches would additionally require to account for the
variations in age and size classes for forest stand across the
simulated area.

CASTANEA simulated a strong positive effect of increased
CO2 on Gross Primary Production (GPP), Water Use Efficiency
(WUE) and biomass growth (BG). The simulated βGPP is
close to average value obtained across FACE experiments (βGPP

= 0.73, 11 sites, 45 species). The simulated βWUE is a bit
lower than the observed increase in ecosystem-scale plant
WUE from Duke and ORNL FACE experiments (0.76 and
1.1, respectively). Finally, the simulated βBG is higher than the
estimated βBG (between 0.49 and 0.56) from FACE experiments
(Walker et al., 2021). However, CASTANEA does not take into
account the possible acclimation of photosynthesis to rising
CO2 concentration and temperatures neither that of respiration
to rising temperatures and water stress. Yet, in C3 plants, the
maximum carboxylation rate and the maximum rate of electron
transport were significantly reduced at elevated CO2 (Ainsworth
and Rogers, 2007). Most species can also shift their thermal
optimum of photosynthesis upward in response to warming
(Crous, 2019). Similarly, temperature acclimation of respiration
involves a change in respiratory capacity and/or the sensitivity
of respiration rate to temperature (Atkin et al., 2008). These

acclimation processes would need to be accounted for in future
simulation studies.

We also only partially accounted for interspecific variability
in thresholds to mortality (e.g., the PLC value leading to
mortality differed among broadleaved and conifer trees), and
not at all for intra-specific variability in vulnerability. Yet,
local adaptation is widespread in tree populations throughout
their distribution ranges (Benito Garzón et al., 2011; Alberto
et al., 2013). For example, Anderegg et al. (2016) demonstrated
a genetic differentiation of xylem resistance traits in several
species. For F. sylvatica, Kreyling et al. (2014) found genetic
differentiation of frost resistance parameters, particularly in
marginal populations. These patterns of intra-specific variability
and differentiation of adaptive traits involved in response
to drought and frost would be interesting to consider in
future simulations.
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